硬木
管道(软件)
计算机科学
人工智能
超参数
鉴定(生物学)
深度学习
人工神经网络
纤维
上下文图像分类
模式识别(心理学)
机器学习
图像(数学)
材料科学
生物
复合材料
生态学
程序设计语言
作者
Lars Nieradzik,Jördis Sieburg-Rockel,Stephanie Helmling,Janis Keuper,Thomas Weibel,Andrea Olbrich,Henrike Stephani
摘要
Abstract We have developed a methodology for the systematic generation of a large image dataset of macerated wood references, which we used to generate image data for nine hardwood genera. This is the basis for a substantial approach to automate, for the first time, the identification of hardwood species in microscopic images of fibrous materials by deep learning. Our methodology includes a flexible pipeline for easy annotation of vessel elements. We compare the performance of different neural network architectures and hyperparameters. Our proposed method performs similarly well to human experts. In the future, this will improve controls on global wood fiber product flows to protect forests.
科研通智能强力驱动
Strongly Powered by AbleSci AI