作者
Dujun Wang,Jiayi Zhu,Jing Lv,Yuping Zhu,Fengwei Li,Chunyin Zhang,Xiaohong Yu
摘要
Plant polysaccharides are highly potent bioactive molecules. Clarifying the structural composition and bioactivities of plant polysaccharides will provide insights into their structure–activity relationships. Therefore, herein, we identified a polysaccharide produced by Salicornia bigelovii Torr. and analyzed the structure and anti-tumor activity of its component, SabPS-1. SabPS-1 was 3.24 × 104 Da, primarily composed of arabinose (24.96 %), galactose (30.39 %), and galacturonic acid (23.20 %), rhamnose (6.21 %), xylose (4.99 %), glucuronic acid (3.12 %), mannuronic acid (1.75 %), mannose (1.69 %), glucose (1.54 %), fucose (1.12 %), and guluronic acid (1.03 %). The backbone of SabPS-1 was a → 4)-β-D-GalpA-(1→, →5)-α-L-Araf-(1→, and→4)-β-D-Galp-(1 → molecule with a branched chain of α-L-Araf-(1 → connected to sugar residues of →3,6)-β-D-Galp-(1 → in the O-3 position. SabPS-1 induced apoptosis and inhibited the growth of HepG-2 cells, with viability of 47.90 ± 4.14 (400 μg/mL), indicating anti-tumor activity. Apoptosis induced by SabPS-1 may be associated with the differential regulation of caspase 3, caspase 8, Bax, and Bcl-2. To the best of our knowledge, this is the first study to investigate the principal structures and anti-tumor biological activities of SabPS-1. Our findings demonstrated the excellent anti-tumor properties of SabPS-1, which will aid in the development of anti-tumor drugs utilizing Salicornia bigelovii Torr.