已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable deep clustering survival machines for Alzheimer’s disease subtype discovery

聚类分析 判别式 人工智能 机器学习 计算机科学 分类 模式识别(心理学) 数据挖掘
作者
Bojian Hou,Zixuan Wen,Jingxuan Bao,R.F Zhang,Boning Tong,Shu Yang,Junhao Wen,Yuhan Cui,Jason H. Moore,Andrew J. Saykin,Heng Huang,Paul M. Thompson,Marylyn D. Ritchie,Christos Davatzikos,Li Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103231-103231 被引量:1
标识
DOI:10.1016/j.media.2024.103231
摘要

Alzheimer's disease (AD) is a complex neurodegenerative disorder that has impacted millions of people worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information and potentially limiting the insights gained. To address this problem, we propose an interpretable survival analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and generative mechanisms. Similar to mixture models, we assume that the timing information of survival data can be generatively described by a mixture of parametric distributions, referred to as expert distributions. We learn the weights of these expert distributions for individual instances in a discriminative manner by leveraging their features. This allows us to characterize the survival information of each instance through a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups with different risks of converting to AD. Conventional clustering measurements for survival analysis along with genetic association studies successfully validate the effectiveness of the proposed method and characterize our clustering findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自信向梦完成签到,获得积分10
2秒前
2秒前
waiting完成签到 ,获得积分10
5秒前
JRRskynet完成签到,获得积分20
7秒前
李爱国应助典雅的诗兰采纳,获得10
11秒前
科研通AI5应助务实的易真采纳,获得30
14秒前
orixero应助xiaobai采纳,获得10
14秒前
15秒前
香蕉觅云应助Aman采纳,获得10
15秒前
只要平凡发布了新的文献求助10
21秒前
roki完成签到,获得积分10
21秒前
如意的易绿完成签到,获得积分10
22秒前
23秒前
roki发布了新的文献求助20
25秒前
27秒前
28秒前
29秒前
waiting发布了新的文献求助10
29秒前
ZIS完成签到,获得积分10
31秒前
Willy发布了新的文献求助10
33秒前
jiaru完成签到,获得积分10
34秒前
今后应助山东老铁采纳,获得10
35秒前
35秒前
一介尘埃完成签到 ,获得积分10
38秒前
nyr1997发布了新的文献求助10
40秒前
过时的毛豆完成签到,获得积分10
49秒前
Julien完成签到 ,获得积分10
50秒前
思源应助优美平凡采纳,获得10
55秒前
56秒前
小蜗发布了新的文献求助10
59秒前
1分钟前
Tansy2023发布了新的文献求助10
1分钟前
小黑之家完成签到 ,获得积分10
1分钟前
比耶完成签到 ,获得积分10
1分钟前
惊蛰时分听春雷完成签到,获得积分10
1分钟前
1分钟前
没有蛀牙发布了新的文献求助10
1分钟前
小蜗完成签到,获得积分10
1分钟前
阉太狼完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749