清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data and knowledge-driven deep multiview fusion network based on diffusion model for hyperspectral image classification

高光谱成像 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 相似性(几何) 样品(材料) 人工神经网络 数据挖掘 图像(数学) 哲学 语言学 化学 色谱法
作者
Junjie Zhang,Feng Zhao,Hanqiang Liu,Jun Yu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123796-123796 被引量:4
标识
DOI:10.1016/j.eswa.2024.123796
摘要

It is a crucial means for humans to perceive geomorphic features and landscape architectures by classifying ground objects in hyperspectral images (HSIs). Currently, the exponential development of neural networks has provided a powerful support for the accurate HSI classification. However, existing neural network-based methods usually rely solely on the data to drive the classification model, lacking attention to valuable land-cover distribution knowledge in HSIs. In view of this, to utilize hyperspectral data and distribution knowledge simultaneously, a data and knowledge-driven deep multiview fusion network based on diffusion model (DKDMN) is proposed in this paper. DKDMN extracts knowledge from unlabeled data in HSIs through a diffusion model-based knowledge learning framework (DMKLF), and combines raw hyperspectral data with the acquired knowledge through a designed deep multiview network architecture (DMNA) to mine complicated land-cover distribution information and reflect sample relationships. First, the proposed DMKLF utilizes the data distribution reconstructed by the diffusion model as a knowledge source for one view to enhance the network cross-sample awareness ability. On the other hand, the original HSI patches are considered a data source for another view, which co-drives DMNA with the unsupervised diffusion knowledge extracted by DMKLF to perform effective feature extraction. Second, taking into account the characteristics of each view and the feature similarity between these two views, a joint loss function specifically for DMNA is suggested to minimize the difference between the model predictions and the real labels. Finally, a multi-backbone integration classification framework (MBICF) is designed by deeply fusing three vision architectures to capture multi-scale spectral features and local–global features, thereby achieving pixel-wise classification effectively. Experimental results on four publicly available HSI datasets demonstrate that the proposed DKDMN achieves competitive classification accuracy compared with other state-of-the-art methods. For instance, the proposed DKDMN achieves an overall accuracy improvement of 1.62% and 2.18% on the Indian Pines and Salinas Valley datasets, respectively, compared to the multiple vision architecture-based hybrid network (MVAHN). The related code will be released at https://github.com/ZJier/DKDMN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
002完成签到,获得积分10
3秒前
001完成签到,获得积分10
15秒前
彭于晏应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
54秒前
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
yuanyuan完成签到,获得积分20
1分钟前
爱静静应助poki采纳,获得30
1分钟前
003完成签到,获得积分10
1分钟前
Sandy应助榴莲采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
跳跃的鹏飞完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
TG303完成签到,获得积分10
6分钟前
6分钟前
老石完成签到 ,获得积分10
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
酷波er应助科研通管家采纳,获得10
6分钟前
Hiram完成签到,获得积分10
6分钟前
7分钟前
withsilence完成签到,获得积分20
7分钟前
withsilence发布了新的文献求助10
7分钟前
CodeCraft应助withsilence采纳,获得10
7分钟前
7分钟前
8分钟前
CodeCraft应助一个小胖子采纳,获得10
8分钟前
KBRS完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
亲豆丁儿发布了新的文献求助30
9分钟前
9分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934613
求助须知:如何正确求助?哪些是违规求助? 3479986
关于积分的说明 11006069
捐赠科研通 3209833
什么是DOI,文献DOI怎么找? 1773803
邀请新用户注册赠送积分活动 860597
科研通“疑难数据库(出版商)”最低求助积分说明 797753