化学
药代动力学
色谱法
生物分析
电喷雾电离
脑脊液
药理学
质谱法
内科学
医学
作者
William A. Knight,Tigran Margaryan,Nader Sanai,Artak Tovmasyan
标识
DOI:10.1016/j.jpba.2024.116150
摘要
Niraparib is a potent and orally bioavailable inhibitor of poly (ADP-ribose) polymerase (PARP) with high specificity for isoforms 1 and 2. It has been approved by the U.S. Food and Drug Administration for ovarian cancer maintenance therapy and is currently under development for various cancers, including glioblastoma. To assess central nervous system (CNS) penetration of niraparib in glioblastoma patients, a novel bioanalytical method was developed to measure total and unbound niraparib levels in human brain tumor tissue and cerebrospinal fluid (CSF). The method was validated using plasma as a surrogate matrix over the concentration range of 1-10,000 nM on an LC-MS/MS system. The MS/MS detection was conducted in positive electrospray ionization mode, while chromatography was performed using a Kinetex™ PS C18 column with a total 3.5-minute gradient elution run time. The maximum coefficient of variation for both intra- and inter-day precision was 10.6%, with accuracy ranging from 92.8% - 118.5% across all matrices. Niraparib was stable in human brain homogenate for at least 6 hours at room temperature (RT) and 32 days at -20°C, as well as in stock and working solutions for at least 21 hours (RT) and 278 days (4°C). Equilibrium dialysis experiments revealed the fractions unbound of 0.05 and 0.16 for niraparib in human brain and plasma, respectively. The validated method is currently employed to assess niraparib levels in human glioblastoma tissue, CSF, and plasma in an ongoing trial on newly diagnosed glioblastoma and recurrent IDH1/2(+) ATRX mutant glioma patients (NCT05076513). Initial results of calculated total (K
科研通智能强力驱动
Strongly Powered by AbleSci AI