An adaptive strategy to improve the partial least squares model via minimum covariance determinant

马氏距离 协方差 偏最小二乘回归 均方误差 估计员 数学 分位数 统计 数据集 计算机科学 集合(抽象数据类型) 分位数回归 人工智能 模式识别(心理学) 程序设计语言
作者
Xudong Huang,Guangzao Huang,Xiaojing Chen,Zhonghao Xie,Shujat Ali,Xi Chen,Lei‐ming Yuan,Wen Shi
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:249: 105120-105120
标识
DOI:10.1016/j.chemolab.2024.105120
摘要

Partial least squares (PLS) regression is a linear regression technique that performs well with high-dimensional regressors. Similar to many other supervised learning techniques, PLS is susceptible to the problem that the prediction and training data are drawn from different distributions, which deteriorates the PLS performance. To address this problem, an adaptive strategy via the minimum covariance determinant (MCD) estimator is proposed to improve the PLS model, which aims to find an appropriate training set for the adaptive construction of an accurate PLS model to fit the prediction data. In this study, an h-subset of the merged set of prediction and training data with the smallest covariance determinant is found via the MCD estimator, and the prediction and training data with Mahalanobis distances to the h-subset less than or equal to a cutoff that is the square root of a quantile of the chi-squared distribution are assumed to have the same distribution, then a PLS model is built on these training data. The proposed method is applied to three real-world datasets and compared with the results of classic PLS, the most significant improvement is obtained for the m5 prediction data in the corn dataset, where the root mean square error of prediction (RMSEP) is reduced from 0.149 to 0.023. For other datasets, our method can also perform better than PLS. The experimental results show the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orchid发布了新的文献求助10
刚刚
bcc发布了新的文献求助10
1秒前
tufei完成签到,获得积分10
3秒前
学术屎壳郎完成签到,获得积分10
3秒前
jiujiu完成签到,获得积分20
4秒前
ZHH完成签到,获得积分10
4秒前
我超超超无奈完成签到,获得积分10
5秒前
5秒前
小谢完成签到 ,获得积分10
5秒前
冷静完成签到,获得积分10
6秒前
狂野世立发布了新的文献求助10
6秒前
7秒前
8秒前
Xx发布了新的文献求助20
8秒前
QQ酱完成签到,获得积分20
8秒前
8秒前
卓向梦发布了新的文献求助10
9秒前
ClaudiaY0发布了新的文献求助10
10秒前
10秒前
善学以致用应助demo1采纳,获得10
10秒前
英俊的铭应助一样不一样采纳,获得10
11秒前
bcc完成签到,获得积分10
12秒前
望除完成签到,获得积分10
12秒前
萨柏斯塔完成签到,获得积分10
12秒前
jiujiu发布了新的文献求助10
13秒前
wanci应助等待映安采纳,获得10
13秒前
卓向梦完成签到,获得积分10
14秒前
李健应助现代宛丝采纳,获得10
15秒前
15秒前
15秒前
qz发布了新的文献求助10
15秒前
王庆伟完成签到,获得积分10
16秒前
眼睛大盼兰完成签到 ,获得积分10
17秒前
19秒前
pp发布了新的文献求助20
19秒前
霍小美完成签到,获得积分10
19秒前
20秒前
sunsuan完成签到,获得积分10
20秒前
FashionBoy应助qsy采纳,获得10
21秒前
anna1992发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791491
求助须知:如何正确求助?哪些是违规求助? 3335911
关于积分的说明 10277959
捐赠科研通 3052606
什么是DOI,文献DOI怎么找? 1675161
邀请新用户注册赠送积分活动 803188
科研通“疑难数据库(出版商)”最低求助积分说明 761111