A review on convolutional neural network in rolling bearing fault diagnosis

可解释性 卷积神经网络 计算机科学 人工智能 深度学习 超参数 一般化 机器学习 特征(语言学) 断层(地质) 领域(数学) 人工神经网络 哲学 数学分析 地震学 地质学 纯数学 语言学 数学
作者
Xin Li,Zengqiang Ma,Zonghao Yuan,Tianming Mu,Guoxin Du,Yan Liang,Jingwen Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 072002-072002 被引量:27
标识
DOI:10.1088/1361-6501/ad356e
摘要

Abstract The health condition of rolling bearings has a direct impact on the safe operation of rotating machinery. And their working environment is harsh and the working condition is complex, which brings challenges to fault diagnosis. With the development of computer technology, deep learning has been applied in the field of fault diagnosis and has rapidly developed. Among them, convolutional neural network (CNN) has received great attention from researchers due to its powerful data mining ability and feature adaptive learning ability. Based on recent research hotspots, the development history and trend of CNN is summarized and analyzed. Firstly, the basic structure of CNN is introduced and the important progress of classical CNN models for rolling bearing fault diagnosis in recent years is studied. The problems with the classic CNN algorithm have been pointed out. Secondly, to solve the above problems, combined with recent research achievements, various methods and principles for optimizing CNN are introduced and compared from the perspectives of deep feature extraction, hyperparameter optimization, network structure optimization. Although significant progress has been made in the research of fault diagnosis of rolling bearings based on CNN, there is still room for improvement and development in addressing issues such as low accuracy of imbalanced data, weak model generalization, and poor network interpretability. Therefore, the future development trend of CNN networks is discussed finally. And transfer learning models are introduced to improve the generalization ability of CNN and interpretable CNN is used to increase the interpretability of CNN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄cc发布了新的文献求助100
1秒前
f冯完成签到,获得积分10
2秒前
感动鞋垫发布了新的文献求助10
3秒前
英俊的铭应助changzm采纳,获得10
3秒前
Hwenjing完成签到,获得积分10
4秒前
gloval完成签到,获得积分10
4秒前
所所应助小维采纳,获得10
6秒前
彭于晏应助海岸采纳,获得10
6秒前
6秒前
由由完成签到,获得积分10
6秒前
6秒前
明理芷天发布了新的文献求助10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
斯文败类应助芝麻糊采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
嘻嘻哈哈应助科研通管家采纳,获得10
8秒前
8秒前
kkdd完成签到,获得积分10
9秒前
9秒前
kirito1211完成签到,获得积分10
9秒前
阿铭完成签到 ,获得积分10
10秒前
小程别放弃完成签到,获得积分10
11秒前
11秒前
玛卡巴卡发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264297
求助须知:如何正确求助?哪些是违规求助? 4424541
关于积分的说明 13773360
捐赠科研通 4299650
什么是DOI,文献DOI怎么找? 2359230
邀请新用户注册赠送积分活动 1355402
关于科研通互助平台的介绍 1316750