已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review on convolutional neural network in rolling bearing fault diagnosis

可解释性 卷积神经网络 计算机科学 人工智能 深度学习 超参数 一般化 机器学习 特征(语言学) 断层(地质) 领域(数学) 人工神经网络 地震学 地质学 数学分析 语言学 哲学 数学 纯数学
作者
Xin Li,Zengqiang Ma,Zonghao Yuan,Tianming Mu,Guoxin Du,Yan Liang,Jingwen Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 072002-072002 被引量:9
标识
DOI:10.1088/1361-6501/ad356e
摘要

Abstract The health condition of rolling bearings has a direct impact on the safe operation of rotating machinery. And their working environment is harsh and the working condition is complex, which brings challenges to fault diagnosis. With the development of computer technology, deep learning has been applied in the field of fault diagnosis and has rapidly developed. Among them, convolutional neural network (CNN) has received great attention from researchers due to its powerful data mining ability and feature adaptive learning ability. Based on recent research hotspots, the development history and trend of CNN is summarized and analyzed. Firstly, the basic structure of CNN is introduced and the important progress of classical CNN models for rolling bearing fault diagnosis in recent years is studied. The problems with the classic CNN algorithm have been pointed out. Secondly, to solve the above problems, combined with recent research achievements, various methods and principles for optimizing CNN are introduced and compared from the perspectives of deep feature extraction, hyperparameter optimization, network structure optimization. Although significant progress has been made in the research of fault diagnosis of rolling bearings based on CNN, there is still room for improvement and development in addressing issues such as low accuracy of imbalanced data, weak model generalization, and poor network interpretability. Therefore, the future development trend of CNN networks is discussed finally. And transfer learning models are introduced to improve the generalization ability of CNN and interpretable CNN is used to increase the interpretability of CNN networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
神勇的青亦给神勇的青亦的求助进行了留言
3秒前
辣椒完成签到 ,获得积分10
3秒前
BZPL发布了新的文献求助10
4秒前
4秒前
CipherSage应助wjnjennifer采纳,获得10
7秒前
7秒前
SYLH应助李子涵采纳,获得10
7秒前
cc完成签到 ,获得积分10
8秒前
re完成签到,获得积分20
8秒前
毓汐完成签到,获得积分10
11秒前
雨洋完成签到,获得积分10
12秒前
re发布了新的文献求助10
12秒前
13秒前
羊呀呀完成签到,获得积分10
15秒前
结实的小土豆完成签到 ,获得积分10
19秒前
19秒前
19秒前
传奇3应助re采纳,获得10
19秒前
科研通AI5应助好奇宝宝采纳,获得10
20秒前
小章鱼发布了新的文献求助10
20秒前
21秒前
陈海伦完成签到 ,获得积分10
22秒前
sciAAA完成签到,获得积分10
22秒前
Brain完成签到 ,获得积分10
22秒前
suicone发布了新的文献求助10
22秒前
Zhang完成签到 ,获得积分10
23秒前
lerrygg发布了新的文献求助40
23秒前
鹰头猫完成签到,获得积分10
23秒前
别找了睡觉吧完成签到 ,获得积分10
24秒前
24秒前
研友_85yrY8发布了新的文献求助10
24秒前
echo完成签到 ,获得积分10
25秒前
甜美砖家完成签到 ,获得积分10
26秒前
HEIKU完成签到,获得积分0
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840608
求助须知:如何正确求助?哪些是违规求助? 3382636
关于积分的说明 10525610
捐赠科研通 3102399
什么是DOI,文献DOI怎么找? 1708788
邀请新用户注册赠送积分活动 822685
科研通“疑难数据库(出版商)”最低求助积分说明 773472