Tuning the Dynamic Reaction Balance of CRISPR/Cas12a and RPA in One Pot: A Key to Switch Nucleic Acid Quantification

清脆的 重组酶聚合酶扩增 核酸 反式激活crRNA 环介导等温扩增 计算生物学 聚合酶链反应 DNA 生物 化学 Cas9 遗传学 基因
作者
Zhihao Yao,Kaiyu He,Hongmei Wang,Suyin Feng,Xiaoqing Ding,Yan Xu,Qiang Wang,Xiahong Xu,Qun Wu,Liu Wang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (7): 3511-3519 被引量:25
标识
DOI:10.1021/acssensors.3c02485
摘要

Excavating nucleic acid quantitative capabilities by combining clustered regularly interspaced short palindromic repeats (CRISPR) and isothermal amplification in one pot is of common interest. However, the mutual interference between CRISPR cleavage and isothermal amplification is the primary obstacle to quantitative detection. Though several works have demonstrated enhanced detection sensitivity by reducing the inhibition of CRISPR on amplification in one pot, few paid attention to the amplification process and even dynamic reaction processes between the two. Herein, we find that DNA quantification can be realized by regulating either recombinase polymerase amplification (RPA) efficiency or CRISPR/Cas12a cleaving efficiency (namely, tuning the dynamic reaction balance) in one pot. The sensitive quantification is realized by utilizing dual PAM-free crRNAs for CRISPR/Cas12a recognition. The varied RPA primer concentration with stabilized CRISPR systems significantly affects the amplification efficiency and quantitative performances. Alternatively, quantitative detection can also be achieved by stabilizing the amplification process while regulating the CRISPR/Cas12a concentration. The quantitative capability is proved by detecting DNA targets from Lactobacillus acetotolerans and SARS-CoV-2. The quantitative performance toward real samples is comparable to quantitative real-time PCR for detecting L. acetotolerans spiked in fermented food samples and SARS-CoV-2 clinical samples. We expect that the presented method will be a powerful tool for quantifying other nucleic acid targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
CipherSage应助niko采纳,获得30
1秒前
顾矜应助niko采纳,获得10
1秒前
畅快静丹发布了新的文献求助10
1秒前
共享精神应助niko采纳,获得10
1秒前
领导范儿应助niko采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
CodeCraft应助niko采纳,获得10
1秒前
善学以致用应助niko采纳,获得10
1秒前
小蘑菇应助niko采纳,获得30
1秒前
充电宝应助niko采纳,获得10
1秒前
李健的粉丝团团长应助niko采纳,获得10
1秒前
boge5633发布了新的文献求助10
2秒前
俭朴从安完成签到,获得积分10
3秒前
乐乐应助才不要做小青蛙采纳,获得10
3秒前
小马甲应助llanncy采纳,获得10
3秒前
4秒前
脑洞疼应助yuwshuihen采纳,获得10
4秒前
上官若男应助yxlao采纳,获得10
4秒前
4秒前
犹豫酸奶完成签到,获得积分10
4秒前
稳重的静丹完成签到,获得积分10
5秒前
大方的嫣发布了新的文献求助10
5秒前
Liyh完成签到,获得积分10
5秒前
搜集达人应助舟遥遥采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
大个应助niko采纳,获得10
8秒前
CodeCraft应助niko采纳,获得10
8秒前
梦里花落声应助niko采纳,获得10
8秒前
月圆夜应助niko采纳,获得10
8秒前
今后应助niko采纳,获得10
8秒前
Jasper应助niko采纳,获得10
8秒前
香蕉觅云应助niko采纳,获得10
8秒前
领导范儿应助niko采纳,获得10
8秒前
Ava应助niko采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980