Applying machine-learning models to differentiate benign and malignant thyroid nodules classified as C-TIRADS 4 based on 2D-ultrasound combined with five contrast-enhanced ultrasound key frames

甲状腺结节 人工智能 接收机工作特性 医学 决策树 支持向量机 梯度升压 放射科 逻辑回归 超声波 计算机科学 随机森林 机器学习 结核(地质) 甲状腺 内科学 古生物学 生物
作者
Jiahui Chen,Yuqing Zhang,Tiantong Zhu,Qian Zhang,Ao-xue Zhao,Ying Huang
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:15 被引量:6
标识
DOI:10.3389/fendo.2024.1299686
摘要

Objectives To apply machine learning to extract radiomics features from thyroid two-dimensional ultrasound (2D-US) combined with contrast-enhanced ultrasound (CEUS) images to classify and predict benign and malignant thyroid nodules, classified according to the Chinese version of the thyroid imaging reporting and data system (C-TIRADS) as category 4. Materials and methods This retrospective study included 313 pathologically diagnosed thyroid nodules (203 malignant and 110 benign). Two 2D-US images and five CEUS key frames (“2 nd second after the arrival time” frame, “time to peak” frame, “2 nd second after peak” frame, “first-flash” frame, and “second-flash” frame) were selected to manually label the region of interest using the “Labelme” tool. A total of 7 images of each nodule and their annotates were imported into the Darwin Research Platform for radiomics analysis. The datasets were randomly split into training and test cohorts in a 9:1 ratio. Six classifiers, namely, support vector machine, logistic regression, decision tree, random forest (RF), gradient boosting decision tree and extreme gradient boosting, were used to construct and test the models. Performance was evaluated using a receiver operating characteristic curve analysis. The area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and F1-score were calculated. One junior radiologist and one senior radiologist reviewed the 2D-US image and CEUS videos of each nodule and made a diagnosis. We then compared their AUC and ACC with those of our best model. Results The AUC of the diagnosis of US, CEUS and US combined CEUS by junior radiologist and senior radiologist were 0.755, 0.750, 0.784, 0.800, 0.873, 0.890, respectively. The RF classifier performed better than the other five, with an AUC of 1 for the training cohort and 0.94 (95% confidence interval 0.88–1) for the test cohort. The sensitivity, specificity, accuracy, PPV, NPV, and F1-score of the RF model in the test cohort were 0.82, 0.93, 0.90, 0.85, 0.92, and 0.84, respectively. The RF model with 2D-US combined with CEUS key frames achieved equivalent performance as the senior radiologist (AUC: 0.94 vs. 0.92, P = 0.798; ACC: 0.90 vs. 0.92) and outperformed the junior radiologist (AUC: 0.94 vs. 0.80, P = 0.039, ACC: 0.90 vs. 0.81) in the test cohort. Conclusions Our model, based on 2D-US and CEUS key frames radiomics features, had good diagnostic efficacy for thyroid nodules, which are classified as C-TIRADS 4. It shows promising potential in assisting less experienced junior radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1111完成签到,获得积分10
1秒前
1秒前
思源应助刘小孩采纳,获得30
2秒前
刻苦的花卷完成签到,获得积分10
2秒前
bzlish发布了新的文献求助10
2秒前
sure完成签到 ,获得积分10
2秒前
网安真难T_T完成签到,获得积分10
3秒前
3秒前
虚心的岩发布了新的文献求助10
4秒前
4秒前
慕青应助温柔翰采纳,获得10
5秒前
5秒前
啊哈发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
我有一头小毛驴完成签到,获得积分10
6秒前
6秒前
zz发布了新的文献求助10
7秒前
Owen应助平常星星采纳,获得10
7秒前
骤雨时晴完成签到 ,获得积分10
8秒前
Luo完成签到,获得积分10
8秒前
8秒前
星辰大海应助yyyyyyy采纳,获得10
8秒前
完美世界应助xuuuuu采纳,获得10
9秒前
9秒前
sure完成签到 ,获得积分10
9秒前
搜集达人应助wu采纳,获得10
10秒前
清秀寄风完成签到,获得积分20
10秒前
从容的发卡完成签到,获得积分10
10秒前
10秒前
guyu发布了新的文献求助10
10秒前
SUE发布了新的文献求助10
10秒前
科研通AI5应助22采纳,获得10
11秒前
11秒前
12秒前
小果子发布了新的文献求助30
12秒前
英姑应助温柔翰采纳,获得10
13秒前
HelloWORLD完成签到,获得积分10
13秒前
勤恳颤发布了新的文献求助20
13秒前
orixero应助Joyce采纳,获得30
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093