细胞外小泡
蛋白质水解
嵌合体(遗传学)
三阴性乳腺癌
乳腺癌
化学
癌症研究
细胞生物学
生物物理学
癌症
医学
生物
生物化学
内科学
基因
酶
作者
Nina Erwin,Umasankar De,Yonglong Xiao,Lei Wang,Chandra K. Maharjan,Xiaoshu Pan,Nikee Awasthee,Guangrong Zheng,Daiqing Liao,Weizhou Zhang,Mei He
标识
DOI:10.1101/2024.08.25.609564
摘要
Proteolysis targeting chimeras (PROTACs) are an emerging targeted cancer therapy approach, but wide-spread clinical use of PROTAC is limited due to poor cell targeting and penetration, and instability in vivo. To overcome such issues and enhance the in vivo efficacy of PROTAC drugs, microfluidic droplet-based electroporation (µDES) was developed as a novel extracellular vesicle (EVs) transfection system, which enables the high-efficient PROTAC loading and effective delivery in vivo. Our previously developed YX968 PROTAC drug had shown the selectively degradation of HDAC3 and 8, which effectively suppresses the growth of breast tumor cell lines, including MDA-MB-231 triple negative breast cancer (TNBC) line, via dual degradation without provoking a global histone hyperacetylation. In this study, we demonstrated that µDES-based PROTAC loading in EVs significantly enhanced therapeutic function of PROTAC drug in vivo in the TNBC breast tumor mouse model. NSG mice with pre-established MDA-MB-231 tumors and treated with intraperitoneal injection of EVs for tumor inhibition study, which showed significantly higher HDAC 3 and 8 degradation efficiency and tumor inhibition than PROTAC only group. The liver, spleen, kidney, lung, heart, and brain were collected for safety testing, which exhibited improved toxicity. The EV delivery of PROTAC drug enhances drug stability and bioavailability in vivo, transportability, and drug targeting ability, which fills an important gap in current development of PROTAC therapeutic functionality in vivo and clinical translation. This novel EV-based drug transfection and delivery strategy could be applicable to various therapeutics for enhancing in vivo delivery, efficacy, and safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI