化学
自然键轨道
分子内力
沮丧的刘易斯对
单独一对
催化作用
密度泛函理论
分子
计算化学
路易斯酸
环氧化物
分子轨道
立体化学
有机化学
作者
Mohmmad Faizan,Guntupalli Santhosh,Madhumita Chakraborty,Ravinder Pawar
摘要
ABSTRACT The conversion of CO 2 into valuable chemicals remains a significant challenge for achieving environmental sustainability, primarily due to the stability of the CO 2 molecule. This necessitates the development of efficient and ecofriendly catalysts. In recent years, frustrated Lewis pairs (FLPs) have shown promise for CO 2 utilization. In this study, we introduce α‐aminodiboronic acid (DBA), a novel trifunctional aminoboronic acid, as an intramolecular FLP for converting CO 2 into cyclic carbonate and formic acid. Using density functional theory (DFT) calculations, we explored the reaction mechanism and investigated DBA's electronic structure through molecular electrostatic potential surface (MESP) and natural bond orbital (NBO) analyses. Our results reveal that one −B (OH) 2 group induces an unusual state of frustration in the molecule due to charge transfer from the nitrogen atom's lone pair to the π* orbitals, enhancing catalytic performance. The additional −B (OH) 2 group serves as an anchoring site for reactive species. The epoxide activation energy is reduced by approximately 27 kcal/mol compared to the uncatalyzed reaction, and the reduction of CO 2 occurs with a requirement of 26 kcal/mol. The additional −B (OH) 2 plays a crucial role in the catalytic mechanism and minimizes the energies of various structures observed in the reaction path. The reaction energetics align with structural analysis observations, marking this study as the first report on single‐molecule trifunctional FLPs for transforming CO 2 into valuable chemicals.
科研通智能强力驱动
Strongly Powered by AbleSci AI