Feedback Loops in Machine Learning: A Study on the Interplay of Continuous Updating and Human Discrimination

贷款 计算机科学 点(几何) 机器学习 人工智能 财务 经济 几何学 数学
作者
Kevin Bauer,Rebecca Heigl,Oliver Hinz,Michael Kosfeld
出处
期刊:Journal of the Association for Information Systems [Association for Information Systems]
卷期号:25 (4): 804-866 被引量:1
标识
DOI:10.17705/1jais.00853
摘要

Machine learning (ML) models often endogenously shape the data available for future updates. This is important because of their role in influencing human decisions, which then generate new data points for training. For instance, if an ML prediction results in the rejection of a loan application, the bank forgoes the opportunity to record the applicant’s actual creditworthiness, thereby impacting the availability of this data point for future model updates and potentially affecting the model’s performance. This paper delves into the relationship between the continuous updating of ML models and algorithmic discrimination in environments where predictions endogenously influence the creation of new training data. Using comprehensive simulations based on secondary empirical data, we examine the dynamic evolution of an ML model’s fairness and economic consequences in a setting that mirrors sequential interactions, such as loan approval decisions. Our findings indicate that continuous updating can help mitigate algorithmic discrimination and enhance economic efficiency over time. Importantly, we provide evidence that human decision makers in the loop who possess the authority to override ML predictions may impede the self-correction of discriminatory models and even induce initially unbiased models to become discriminatory with time. These findings underscore the complex sociotechnological nature of algorithmic discrimination and highlight the role that humans play in addressing it when ML models undergo continuous updating. Our results have important practical implications, especially considering the impending regulations mandating human involvement in ML-supported decision-making processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研长颈鹿采纳,获得10
1秒前
vgh发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
mayu发布了新的文献求助10
7秒前
vgh完成签到,获得积分10
8秒前
12秒前
八号向日葵应助小煜哥采纳,获得10
12秒前
一丁雨完成签到,获得积分10
13秒前
14秒前
15秒前
tk完成签到 ,获得积分10
17秒前
科研通AI5应助ni采纳,获得10
17秒前
xiao完成签到 ,获得积分10
18秒前
mayu完成签到,获得积分10
18秒前
传奇3应助无心的无敌采纳,获得10
19秒前
泊来完成签到 ,获得积分10
22秒前
26秒前
瘦瘦瘦完成签到 ,获得积分10
27秒前
辛谷方松永旭完成签到 ,获得积分10
28秒前
风雨中奔跑的兔子完成签到,获得积分10
33秒前
33秒前
醉熏的伊完成签到,获得积分10
33秒前
34秒前
重要忆秋完成签到,获得积分10
35秒前
蟹蟹发布了新的文献求助10
35秒前
36秒前
StayGolDay完成签到,获得积分10
38秒前
38秒前
38秒前
AyCaramba发布了新的文献求助10
42秒前
red完成签到,获得积分20
42秒前
isfj发布了新的文献求助10
43秒前
44秒前
50秒前
简珹楚完成签到 ,获得积分10
51秒前
52秒前
含泪的微笑完成签到,获得积分10
52秒前
misong完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782042
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10231993
捐赠科研通 3042473
什么是DOI,文献DOI怎么找? 1669990
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825