已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion network with spatial channel attention infusion and frequency spatial attention for brain tumor segmentation

增采样 分割 计算机科学 人工智能 特征(语言学) 频道(广播) 磁共振弥散成像 图像分割 模式识别(心理学) 条件随机场 噪音(视频) 计算机视觉 磁共振成像 图像(数学) 放射科 计算机网络 哲学 语言学 医学
作者
Jiaqi Mi,Xindong Zhang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17482
摘要

Abstract Background Accurate segmentation of gliomas is crucial for diagnosis, treatment planning, and evaluating therapeutic efficacy. Physicians typically analyze and delineate tumor regions in brain magnetic resonance imaging (MRI) images based on personal experience, which is often time‐consuming and subject to individual interpretation. Despite advancements in deep learning technology for image segmentation, current techniques still face challenges in clearly defining tumor boundary contours and enhancing segmentation accuracy. Purpose To address these issues, this paper proposes a conditional diffusion network (SF‐Diff) with a spatial channel attention infusion (SCAI) module and a frequency spatial attention (FSA) mechanism to achieve accurate segmentation of the whole tumor (WT) region in brain tumors. Methods SF‐Diff initially extracts multiscale information from multimodal MRI images and subsequently employs a diffusion model to restore boundaries and details, thereby enabling accurate brain tumor segmentation (BraTS). Specifically, a SCAI module is developed to capture multiscale information within and between encoder layers. A dual‐channel upsampling block (DUB) is designed to assist in detail recovery during upsampling. A FSA mechanism is introduced to better match the conditional features with the diffusion probability distribution information. Furthermore, a cross‐model loss function has been implemented to supervise the feature extraction of the conditional model and the noise distribution of the diffusion model. Results The dataset used in this paper is publicly available and includes 369 patient cases from the Multimodal BraTS Challenge 2020 (BraTS2020). The conducted experiments on BraTS2020 demonstrate that SF‐Diff performs better than other state‐of‐the‐art models. The method achieved a Dice score of 91.87%, a Hausdorff 95 of 5.47 mm, an IoU of 84.96%, a sensitivity of 92.29%, and a specificity of 99.95% on BraTS2020. Conclusions The proposed SF‐Diff performs well in identifying the WT region of the brain tumors compared to other state‐of‐the‐art models, especially in terms of boundary contours and non‐contiguous lesion regions, which is clinically significant. In the future, we will further develop this method for brain tumor three‐class segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Yy采纳,获得10
1秒前
fwda1000完成签到 ,获得积分10
1秒前
3秒前
4秒前
恋雅颖月发布了新的文献求助10
5秒前
6秒前
9秒前
10秒前
阿吉完成签到,获得积分10
12秒前
Hello应助恋雅颖月采纳,获得10
13秒前
real发布了新的文献求助10
15秒前
完美世界应助言言采纳,获得10
16秒前
Yy发布了新的文献求助10
16秒前
16秒前
一只小鬼Q完成签到 ,获得积分10
17秒前
断棍豪斯完成签到,获得积分10
17秒前
homer完成签到,获得积分10
19秒前
21秒前
lvlulu发布了新的文献求助10
22秒前
23秒前
无语的小熊猫完成签到 ,获得积分10
23秒前
orixero应助优雅青梦采纳,获得10
25秒前
25秒前
Tyy完成签到,获得积分20
26秒前
动漫大师发布了新的文献求助10
26秒前
28秒前
Bellis发布了新的文献求助10
31秒前
言言发布了新的文献求助10
35秒前
谁用的我的名字完成签到,获得积分10
36秒前
39秒前
maqin完成签到,获得积分10
41秒前
41秒前
于奕霖发布了新的文献求助10
42秒前
42秒前
我真服了完成签到 ,获得积分10
45秒前
芋头发布了新的文献求助10
45秒前
陶醉书包发布了新的文献求助100
46秒前
在水一方应助义气天真采纳,获得10
49秒前
大猫发布了新的文献求助10
49秒前
real完成签到 ,获得积分10
52秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391