Diffusion network with spatial channel attention infusion and frequency spatial attention for brain tumor segmentation

增采样 分割 计算机科学 人工智能 特征(语言学) 频道(广播) 磁共振弥散成像 图像分割 模式识别(心理学) 条件随机场 噪音(视频) 计算机视觉 磁共振成像 图像(数学) 放射科 计算机网络 哲学 医学 语言学
作者
Jiaqi Mi,Xindong Zhang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17482
摘要

Abstract Background Accurate segmentation of gliomas is crucial for diagnosis, treatment planning, and evaluating therapeutic efficacy. Physicians typically analyze and delineate tumor regions in brain magnetic resonance imaging (MRI) images based on personal experience, which is often time‐consuming and subject to individual interpretation. Despite advancements in deep learning technology for image segmentation, current techniques still face challenges in clearly defining tumor boundary contours and enhancing segmentation accuracy. Purpose To address these issues, this paper proposes a conditional diffusion network (SF‐Diff) with a spatial channel attention infusion (SCAI) module and a frequency spatial attention (FSA) mechanism to achieve accurate segmentation of the whole tumor (WT) region in brain tumors. Methods SF‐Diff initially extracts multiscale information from multimodal MRI images and subsequently employs a diffusion model to restore boundaries and details, thereby enabling accurate brain tumor segmentation (BraTS). Specifically, a SCAI module is developed to capture multiscale information within and between encoder layers. A dual‐channel upsampling block (DUB) is designed to assist in detail recovery during upsampling. A FSA mechanism is introduced to better match the conditional features with the diffusion probability distribution information. Furthermore, a cross‐model loss function has been implemented to supervise the feature extraction of the conditional model and the noise distribution of the diffusion model. Results The dataset used in this paper is publicly available and includes 369 patient cases from the Multimodal BraTS Challenge 2020 (BraTS2020). The conducted experiments on BraTS2020 demonstrate that SF‐Diff performs better than other state‐of‐the‐art models. The method achieved a Dice score of 91.87%, a Hausdorff 95 of 5.47 mm, an IoU of 84.96%, a sensitivity of 92.29%, and a specificity of 99.95% on BraTS2020. Conclusions The proposed SF‐Diff performs well in identifying the WT region of the brain tumors compared to other state‐of‐the‐art models, especially in terms of boundary contours and non‐contiguous lesion regions, which is clinically significant. In the future, we will further develop this method for brain tumor three‐class segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syiimo完成签到 ,获得积分10
刚刚
Deny完成签到,获得积分10
刚刚
2秒前
积极的凌波完成签到,获得积分20
2秒前
1397发布了新的文献求助10
2秒前
YY完成签到,获得积分10
3秒前
d83应助xwwx采纳,获得10
3秒前
研友_nV2Kyn完成签到,获得积分10
6秒前
wyh发布了新的文献求助10
6秒前
7秒前
8秒前
思源应助xianyu采纳,获得10
8秒前
ONE完成签到,获得积分10
8秒前
欣喜思萱完成签到,获得积分10
8秒前
liyi发布了新的文献求助10
13秒前
不如不见完成签到 ,获得积分10
13秒前
ff发布了新的文献求助10
13秒前
小土豆完成签到,获得积分10
13秒前
1397完成签到,获得积分20
16秒前
Nn1发布了新的文献求助10
16秒前
田様应助放寒假的采纳,获得10
16秒前
16秒前
17秒前
ding应助wyh采纳,获得10
18秒前
小羊完成签到,获得积分10
20秒前
HY完成签到 ,获得积分10
20秒前
21秒前
21秒前
superLmy完成签到 ,获得积分10
21秒前
liyi完成签到,获得积分20
22秒前
番茄发布了新的文献求助10
22秒前
zmz发布了新的文献求助10
22秒前
loseyourself发布了新的文献求助10
24秒前
tx发布了新的文献求助150
26秒前
darsting11发布了新的文献求助10
28秒前
完美的一天完成签到,获得积分10
29秒前
31秒前
32秒前
番茄完成签到,获得积分10
33秒前
MUWENYING发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4439479
求助须知:如何正确求助?哪些是违规求助? 3912085
关于积分的说明 12149863
捐赠科研通 3559048
什么是DOI,文献DOI怎么找? 1953656
邀请新用户注册赠送积分活动 993449
科研通“疑难数据库(出版商)”最低求助积分说明 888922