On-Demand Meal Delivery: A Markov Model for Circulating Couriers

马尔可夫链 计算机科学 马尔可夫模型 运筹学 业务 运输工程 工程类 机器学习
作者
Michael G.H. Bell,Dat Tien Le,Jyotirmoyee Bhattacharjya,Glenn Geers
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/trsc.2024.0513
摘要

On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
港岛妹妹应助梁嘉琪采纳,获得20
刚刚
本尼脸上褶子完成签到 ,获得积分10
1秒前
白笑石完成签到,获得积分10
2秒前
田様应助77采纳,获得10
3秒前
3秒前
大龙哥886发布了新的文献求助10
3秒前
小太阳完成签到,获得积分10
4秒前
愉快的绿柏完成签到,获得积分10
4秒前
Ava应助浩哥要strong采纳,获得10
4秒前
Nowind完成签到,获得积分10
5秒前
Dave完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
科研通AI6应助qiudaoyv11采纳,获得10
9秒前
浩哥要strong完成签到,获得积分10
9秒前
科研狗狗完成签到,获得积分10
10秒前
10秒前
Dave发布了新的文献求助10
11秒前
LHZ发布了新的文献求助10
11秒前
梦里格斗家完成签到,获得积分10
12秒前
CodeCraft应助dad采纳,获得10
13秒前
科研小秦完成签到,获得积分10
13秒前
周乘风完成签到,获得积分10
13秒前
aubrey关注了科研通微信公众号
13秒前
L14完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
情怀应助结实的姒采纳,获得10
14秒前
15秒前
沉静的安露完成签到 ,获得积分20
15秒前
15秒前
16秒前
圆圆酱发布了新的文献求助10
16秒前
毛竹完成签到,获得积分10
16秒前
17秒前
alex发布了新的文献求助10
18秒前
王叮叮完成签到,获得积分10
18秒前
斯文败类应助无敌大裤衩采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550501
求助须知:如何正确求助?哪些是违规求助? 3980502
关于积分的说明 12323871
捐赠科研通 3649615
什么是DOI,文献DOI怎么找? 2010086
邀请新用户注册赠送积分活动 1045400
科研通“疑难数据库(出版商)”最低求助积分说明 933838