GPAC-YOLOv8: Lightweight Target detection for fire scenarios

计算机科学
作者
Yunyan Wang,Zhangyi Kou
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad7a17
摘要

Abstract Current fire object detection methods face challenges due to the large number of parameters in deep network models, making it difficult to adapt to limited hardware configurations. Additionally, detecting small targets in the early stages of a fire is challenging. Therefore, this paper proposes a fire and smoke detection method based on
YOLOv8, named GPAC-YOLOv8. Firstly, the Ghost module and PSA attention mechanism are integrated into the Backbone to design the CGP module, which enhances computational speed without sacrificing accuracy. Then, a new feature fusion module, AC-Neck, is designed using the ASFF method and the lightweight CARAFE upsampling module to optimize feature map fusion and improve the performance of small target detection. Finally, a Focal-WIoU loss function with a dual weighting mechanism is designed to accurately define the aspect ratios of the predicted bounding boxes, thereby enhancing the model's generalization capability . Experimental results using the proposed
GEAC-YOLOv8 method on a self-made dataset show significant improvements in detection speed while maintaining detection accuracy compared to other t raditional methods. Therefore, the GPAC-YOLOv8 method effectively enhances the performance of object detection in fire and smoke scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金超智发布了新的文献求助10
刚刚
AmbitionY完成签到,获得积分10
2秒前
ding应助心灵美的花卷采纳,获得10
2秒前
zyc完成签到,获得积分10
4秒前
5秒前
烟花应助无辜澜采纳,获得10
6秒前
大模型应助武雨寒采纳,获得10
8秒前
追逐的疯完成签到 ,获得积分10
9秒前
10秒前
鑫渊完成签到,获得积分10
12秒前
一一应助激情的一斩采纳,获得20
12秒前
uu完成签到 ,获得积分20
12秒前
Ava应助激昂的如柏采纳,获得10
13秒前
dou完成签到 ,获得积分10
13秒前
领导范儿应助Colossus采纳,获得10
14秒前
14秒前
Rico_完成签到,获得积分10
15秒前
19秒前
小小菜鸟完成签到 ,获得积分10
19秒前
19秒前
Akim应助吃吃货采纳,获得10
20秒前
望南完成签到,获得积分10
21秒前
无花果应助Rico_采纳,获得10
22秒前
FashionBoy应助小橘采纳,获得10
23秒前
Siyu完成签到 ,获得积分10
24秒前
24秒前
彭于晏应助顺利纸飞机采纳,获得10
24秒前
陈陈发布了新的文献求助10
24秒前
25秒前
26秒前
苹果酸奶完成签到 ,获得积分10
26秒前
叫我少爷完成签到 ,获得积分10
27秒前
29秒前
shufessm完成签到,获得积分0
29秒前
xiaobai完成签到,获得积分10
29秒前
武雨寒发布了新的文献求助10
30秒前
白日梦发布了新的文献求助10
31秒前
33秒前
SciGPT应助小单王采纳,获得10
34秒前
吃吃货发布了新的文献求助10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800362
求助须知:如何正确求助?哪些是违规求助? 3345637
关于积分的说明 10326218
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680810
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763560