Revealing the Dark Side of Non-Local Attention in Single Image Super-Resolution

人工智能 计算机视觉 计算机科学 图像分辨率 模式识别(心理学)
作者
Jian-Nan Su,Guodong Fan,Min Gan,Guangyong Chen,Wen-Zhong Guo,C. L. Philip Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2024.3457790
摘要

Single Image Super-Resolution (SISR) aims to reconstruct a high-resolution image from its corresponding low-resolution input. A common technique to enhance the reconstruction quality is Non-Local Attention (NLA), which leverages self-similar texture patterns in images. However, we have made a novel finding that challenges the prevailing wisdom. Our research reveals that NLA can be detrimental to SISR and even produce severely distorted textures. For example, when dealing with severely degrade textures, NLA may generate unrealistic results due to the inconsistency of non-local texture patterns. This problem is overlooked by existing works, which only measure the average reconstruction quality of the whole image, without considering the potential risks of using NLA. To address this issue, we propose a new perspective for evaluating the reconstruction quality of NLA, by focusing on the sub-pixel level that matches the pixel-wise fusion manner of NLA. From this perspective, we provide the approximate reconstruction performance upper bound of NLA, which guides us to design a concise yet effective Texture-Fidelity Strategy (TFS) to mitigate the degradation caused by NLA. Moreover, the proposed TFS can be conveniently integrated into existing NLA-based SISR models as a general building block. Based on the TFS, we develop a Deep Texture-Fidelity Network (DTFN), which achieves state-of-the-art performance for SISR. Our code and a pre-trained DTFN are available on GitHub for verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
叮当完成签到,获得积分10
2秒前
领导范儿应助Charles采纳,获得10
2秒前
Whenhow发布了新的文献求助10
3秒前
壁上同年完成签到,获得积分10
3秒前
3秒前
123关闭了123文献求助
4秒前
香蕉觅云应助懵懂的碧彤采纳,获得10
5秒前
lzr发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
卡卡西应助直率的花生采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
Livrik完成签到,获得积分10
9秒前
9秒前
样杨羊完成签到,获得积分10
10秒前
10秒前
11秒前
Livrik发布了新的文献求助10
12秒前
88发布了新的文献求助10
12秒前
落后十八完成签到,获得积分10
12秒前
样杨羊发布了新的文献求助10
13秒前
CipherSage应助彪壮的机器猫采纳,获得10
13秒前
Singularity应助冰冰采纳,获得10
13秒前
情怀应助多肉葡萄采纳,获得10
13秒前
QIAN完成签到,获得积分20
14秒前
15秒前
15秒前
和路雪发布了新的文献求助10
15秒前
15秒前
我不困完成签到,获得积分10
18秒前
20秒前
魔幻毛豆发布了新的文献求助10
20秒前
HXX完成签到,获得积分20
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802191
求助须知:如何正确求助?哪些是违规求助? 3347960
关于积分的说明 10335656
捐赠科研通 3063897
什么是DOI,文献DOI怎么找? 1682293
邀请新用户注册赠送积分活动 807961
科研通“疑难数据库(出版商)”最低求助积分说明 763997