Molecular Dynamics Simulations for Electrocatalytic CO2 Reduction: Bridging Macroscopic Experimental Observations and Microscopic Explanatory Mechanisms

桥接(联网) 材料科学 化学物理 分子动力学 统计物理学 纳米技术 计算化学 物理 化学 计算机科学 计算机网络
作者
Yanzheng He,Mengfan Wang,Haoqing Ji,Qiyang Cheng,Sisi Liu,Yunfei Huan,Qian Tao,Chenglin Yan
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (3) 被引量:22
标识
DOI:10.1002/adfm.202413703
摘要

Abstract Electrocatalytic carbon dioxide reduction reaction (CO 2 RR) has been recognized as a promising route to convert carbon emissions to high‐value chemicals and fuels. Significant breakthroughs are usually inseparable from deeper understanding of reaction mechanisms. To this end, molecular dynamics (MD) simulations have been invaluable in providing detailed insights into elucidation of complex reaction pathways and prediction of overall electrochemical performance, thus bridging macroscopic experimental observations and microscopic explanatory mechanisms. Directed by MD simulations, tremendous efforts have been devoted toward enhancing the CO 2 RR with rational design of electrocatalyst and efficient construction of electrode/electrolyte interface. Herein, a comprehensive review of applications of MD simulations in CO 2 RR is emerged. To begin with, specific fundamentals along with familiar methods such as algorithm and force fields of various MD simulations have been summed up. Followed, employment of MD simulations in optimization of CO 2 RR is introduced, encompassing interpretation of electrocatalyst activity, explanation of electrolyte effect, and investigation of electrode microenvironment. Definitively, imminent challenges and avenues for optimization in future MD simulations are contemplated, envisioning this review as a guiding beacon for future endeavors aimed at harnessing MD simulations to propel CO 2 RR toward a realm of heightened efficiency, economic viability, and practical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Diamond完成签到 ,获得积分10
2秒前
李健应助休思采纳,获得10
2秒前
2秒前
3秒前
壮观静柏发布了新的文献求助10
3秒前
4秒前
liangdayi357完成签到,获得积分10
5秒前
杨桑发布了新的文献求助20
5秒前
Lialilico完成签到,获得积分10
6秒前
6秒前
忧虑的勒发布了新的文献求助10
7秒前
鱼干发布了新的文献求助10
8秒前
9秒前
9秒前
绵绵球发布了新的文献求助10
9秒前
伶俐天荷发布了新的文献求助10
9秒前
ding应助幽默书瑶采纳,获得10
10秒前
不晚完成签到,获得积分10
10秒前
李爱国应助自洽采纳,获得10
13秒前
15秒前
毛耳朵发布了新的文献求助10
15秒前
17秒前
19秒前
Luka完成签到,获得积分10
20秒前
25秒前
28秒前
liangdayi357发布了新的文献求助10
29秒前
木木杉完成签到 ,获得积分0
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172