Intentional binding for noninvasive BCI control

脑-机接口 神经康复 运动表象 计算机科学 人机交互 脑电图 代理意识 认知 人工智能 接口(物质) 心理学 神经科学 康复 气泡 最大气泡压力法 并行计算
作者
Tristan Venot,Arthur Desbois,Marie Constance Corsi,Laurent Hugueville,Ludovic Saint-Bauzel,Fabrizio De Vico Fallani
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046026-046026 被引量:4
标识
DOI:10.1088/1741-2552/ad628c
摘要

Abstract Objective . Noninvasive brain–computer interfaces (BCIs) allow to interact with the external environment by naturally bypassing the musculoskeletal system. Making BCIs efficient and accurate is paramount to improve the reliability of real-life and clinical applications, from open-loop device control to closed-loop neurorehabilitation. Approach . By promoting sense of agency and embodiment, realistic setups including multimodal channels of communication, such as eye-gaze, and robotic prostheses aim to improve BCI performance. However, how the mental imagery command should be integrated in those hybrid systems so as to ensure the best interaction is still poorly understood. To address this question, we performed a hybrid EEG-based BCI training involving healthy volunteers enrolled in a reach-and-grasp action operated by a robotic arm. Main results . Showed that the hand grasping motor imagery timing significantly affects the BCI accuracy evolution as well as the spatiotemporal brain dynamics. Larger accuracy improvement was obtained when motor imagery is performed just after the robot reaching, as compared to before or during the movement. The proximity with the subsequent robot grasping favored intentional binding, led to stronger motor-related brain activity, and primed the ability of sensorimotor areas to integrate information from regions implicated in higher-order cognitive functions. Significance . Taken together, these findings provided fresh evidence about the effects of intentional binding on human behavior and cortical network dynamics that can be exploited to design a new generation of efficient brain-machine interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助落寞的楼房采纳,获得10
刚刚
1秒前
科研通AI6应助xuan采纳,获得10
1秒前
大模型应助阿发采纳,获得10
1秒前
2秒前
云飞发布了新的文献求助10
2秒前
chen完成签到,获得积分20
2秒前
yyx发布了新的文献求助10
3秒前
3秒前
赵昊完成签到,获得积分10
4秒前
4秒前
研友_ngJQzL完成签到,获得积分10
4秒前
Jared应助LLLLLL采纳,获得10
5秒前
Lmey完成签到 ,获得积分10
5秒前
123jopop完成签到,获得积分0
5秒前
6秒前
Sam完成签到,获得积分10
6秒前
ffingger完成签到 ,获得积分10
7秒前
HYQ发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
7秒前
医生发布了新的文献求助10
7秒前
DHY完成签到,获得积分10
8秒前
8秒前
赵昊发布了新的文献求助10
8秒前
yan发布了新的文献求助10
9秒前
华仔应助背后寒烟采纳,获得10
9秒前
9秒前
10秒前
Brave完成签到,获得积分10
11秒前
科研通AI6应助xuan采纳,获得10
11秒前
13秒前
13秒前
走马完成签到,获得积分10
14秒前
15秒前
17秒前
明亮雍发布了新的文献求助10
17秒前
kc完成签到,获得积分10
17秒前
王老师完成签到 ,获得积分10
17秒前
壮观的雨柏完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646642
求助须知:如何正确求助?哪些是违规求助? 4771984
关于积分的说明 15036015
捐赠科研通 4805413
什么是DOI,文献DOI怎么找? 2569677
邀请新用户注册赠送积分活动 1526636
关于科研通互助平台的介绍 1485860