Untargeted Metabolomics and Soil Community Metagenomics Analyses Combined with Machine Learning Evaluation Uncover Geographic Differences in Ginseng from Different Locations

基因组 代谢组学 人参 生物 计算生物学 生物信息学 医学 生物化学 基因 病理 替代医学
作者
Yuan Hui Cui,Daian Pan,Jiabao Feng,Daqing Zhao,Meichen Liu,Zhengqi Dong,Shichao Liu,Siming Wang
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:72 (39): 21922-21934 被引量:2
标识
DOI:10.1021/acs.jafc.4c04708
摘要

C.A. Meyer, known as the "King of Herbs," has been used as a nutritional supplement for both food and medicine with the functions of relieving fatigue and improving immunity for thousands of years in China. In agricultural planting, soil environments of different geographical origins lead to obvious differences in the quality of ginseng, but the potential mechanism of the differences remains unclear. In this study, 20 key differential metabolites, including ginsenoside Rb1, glucose 6-phosphate, etc., were found in ginseng from 10 locations in China using an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-untargeted metabolomics approach. The soil properties were analyzed and combined with metagenomics technology to explore the possible relationships among microbial elements in planting soil. Through Spearman correlation analysis, it was found that the top 10 microbial colonies with the highest abundance in the soil were significantly correlated with key metabolites. In addition, the relationship model established by the random forest algorithm and the quantitative relationship between soil microbial abundance and ginseng metabolites were successfully predicted. The XGboost model was used to determine 20(R)-ginseng Rg2 and 2'(R)-ginseng Rg3 as feature labeled metabolites, and the optimal ginseng production area was discovered. These results prove that the accumulation of metabolites in ginseng was influenced by microorganisms in the planting soil, which led to geographical differences in ginseng quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123yaoyao发布了新的文献求助10
刚刚
阿海的发布了新的文献求助10
刚刚
行道吉安完成签到,获得积分10
1秒前
wss应助Jjj采纳,获得20
4秒前
5秒前
5秒前
黄金城发布了新的文献求助10
5秒前
烂漫香水完成签到 ,获得积分10
5秒前
星辰大海应助hxm采纳,获得10
7秒前
7秒前
科研通AI6应助请叫我盒子采纳,获得50
7秒前
量子星尘发布了新的文献求助50
7秒前
丘比特应助笙箫采纳,获得10
8秒前
情怀应助子衿采纳,获得10
8秒前
TWT完成签到,获得积分10
8秒前
xxx发布了新的文献求助30
8秒前
9秒前
CMD完成签到 ,获得积分10
9秒前
李健应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助小殷采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
阿海的完成签到,获得积分10
11秒前
13秒前
小殷完成签到,获得积分10
16秒前
JamesPei应助发发发采纳,获得10
16秒前
眰恦完成签到 ,获得积分0
16秒前
打打应助务实凡灵采纳,获得10
16秒前
林菲菲发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355