Skeleton-based deep pose feature learning for action quality assessment on figure skating videos

RGB颜色模型 特征(语言学) 人工智能 计算机科学 计算机视觉 卷积神经网络 特征提取 特征学习 姿势 深度学习 代表(政治) 模式识别(心理学) 语言学 政治 哲学 法学 政治学
作者
Huiying Li,Qing Lei,Hongbo Zhang,Ji‐Xiang Du,Shangce Gao
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier BV]
卷期号:89: 103625-103625 被引量:10
标识
DOI:10.1016/j.jvcir.2022.103625
摘要

Most of the existing Action Quality Assessment (AQA) methods for scoring sports videos have deeply researched how to evaluate the single action or several sequential-defined actions that performed in short-term sport videos, such as diving, vault, etc. They attempted to extract features directly from RGB videos through 3D ConvNets, which makes the features mixed with ambiguous scene information. To investigate the effectiveness of deep pose feature learning on automatically evaluating the complicated activities in long-duration sports videos, such as figure skating and artistic gymnastic, we propose a skeleton-based deep pose feature learning method to address this problem. For pose feature extraction, a spatial–temporal pose extraction module (STPE) is built to capture the subtle changes of human body movements and obtain the detail representations for skeletal data in space and time dimensions. For temporal information representation, an inter-action temporal relation extraction module (ATRE) is implemented by recurrent neural network to model the dynamic temporal structure of skeletal subsequences. We evaluate the proposed method on figure skating activity of MIT-skate and FIS-V datasets. The experimental results show that the proposed method is more effective than RGB video-based deep feature learning methods, including SENet and C3D. Significant performance progress has been achieved for the Spearman Rank Correlation (SRC) on MIT-Skate dataset. On FIS-V dataset, for the Total Element Score (TES) and the Program Component Score (PCS), better SRC and MSE have been achieved between the predicted scores against the judge's ones when compared with SENet and C3D feature methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云蓝完成签到 ,获得积分10
1秒前
linkman应助蜡笔小孙采纳,获得100
2秒前
tlm发布了新的文献求助10
3秒前
Akim应助chengshaoyan采纳,获得10
3秒前
4秒前
田様应助agou采纳,获得10
4秒前
4秒前
kaige66完成签到,获得积分10
4秒前
李伟完成签到,获得积分10
5秒前
混子完成签到,获得积分10
5秒前
田様应助糖小夕采纳,获得10
5秒前
5秒前
6秒前
7秒前
普鲁斯特发布了新的文献求助10
7秒前
NexusExplorer应助忧郁的雨采纳,获得10
7秒前
8秒前
8秒前
8秒前
zzx完成签到 ,获得积分10
8秒前
果称发布了新的文献求助10
10秒前
完美蚂蚁发布了新的文献求助10
11秒前
樱桃儿发布了新的文献求助10
11秒前
12秒前
企鹅发布了新的文献求助10
12秒前
李无用完成签到,获得积分10
13秒前
海波发布了新的文献求助10
13秒前
14秒前
14秒前
老丫大侠完成签到 ,获得积分10
14秒前
15秒前
77发布了新的文献求助10
15秒前
科研通AI5应助坛子采纳,获得10
16秒前
16秒前
17秒前
千泷发布了新的文献求助10
17秒前
18秒前
陆为发布了新的文献求助10
18秒前
栀初发布了新的文献求助10
18秒前
酷波er应助inghai采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4510817
求助须知:如何正确求助?哪些是违规求助? 3956839
关于积分的说明 12266632
捐赠科研通 3617772
什么是DOI,文献DOI怎么找? 1990626
邀请新用户注册赠送积分活动 1027018
科研通“疑难数据库(出版商)”最低求助积分说明 918378