肿胀 的
复合数
壳聚糖
傅里叶变换红外光谱
膨胀能力
静电纺丝
化学工程
溶剂
化学
材料科学
纤维
高分子化学
聚合物
核化学
复合材料
有机化学
工程类
作者
Saowakon Wongsasulak,Natthon Puttipaiboon,Tipaporn Yoovidhya
标识
DOI:10.1111/1750-3841.12126
摘要
Abstract Fabrication, via electrospinning, and characterization of an ultrafine structure architected from a blend of hydrophobic zein and hydrophilic chitosan (CS) were conducted. Poly(ethylene oxide) (PEO) and nonionic surfactant, namely, Tween ® 40, were employed to improve the electrospinnability of the blend, while ethanol was used as a solvent for zein. The effects of ethanol (EtOH) concentration (85% and 90%) and ratio of zein/PEO/CS (95/2.5/2.5 and 87.5/10/2.5) on the fiber morphology as well as gastromucoadhesivity against porcine stomach mucosa were then investigated; polymer‐mucosa adhesion was also investigated via Fourier‐transform infrared spectroscopy. Swelling and degradation of the composite ultrafine fibers were investigated under 2 simulated gastric conditions, namely, at pH 2 without pepsin and at pH 1.2 with pepsin. Using 85% EtOH as a solvent for zein resulted in a spider‐web‐like morphology; the maximum detachment force (MDF), which is an indirect indicator of the gastromucoadhesivity was nevertheless higher. Zein‐based ultrafine fibers exhibited higher MDF than the zein‐PEO‐CS composite; however, the cohesiveness of the composite fibers was higher. FTIR spectroscopic results indicated molecular interactions between the composite fibers and mucin functional groups. Swelling of the composite ultrafine fibers in simulated gastric fluid (SGF) at pH 2 without pepsin was not different from that in SGF at pH 1.2 with pepsin. Nevertheless, degradation of the composite fibers in SGF at pH 2 without pepsin was much less than that in SGF at pH 1.2 with pepsin; only 20% degradation was noted in the former case.
科研通智能强力驱动
Strongly Powered by AbleSci AI