清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabius0351完成签到 ,获得积分10
22秒前
Emperor完成签到 ,获得积分0
36秒前
1分钟前
萝卜猪完成签到,获得积分10
2分钟前
文文完成签到,获得积分10
2分钟前
2分钟前
练得身形似鹤形完成签到 ,获得积分10
2分钟前
文文发布了新的文献求助10
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助谨慎初蝶采纳,获得10
3分钟前
3分钟前
优雅山柏发布了新的文献求助10
3分钟前
顺利问玉完成签到 ,获得积分10
4分钟前
4分钟前
谨慎初蝶发布了新的文献求助10
4分钟前
谨慎初蝶完成签到,获得积分10
4分钟前
领导范儿应助12345采纳,获得50
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
通科研完成签到 ,获得积分10
5分钟前
ning_qing完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
12345发布了新的文献求助50
5分钟前
无情的友容完成签到 ,获得积分10
6分钟前
不秃燃的小老弟完成签到 ,获得积分10
6分钟前
苏苏爱学习完成签到 ,获得积分10
6分钟前
spy完成签到 ,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
勿奈何完成签到,获得积分10
7分钟前
7分钟前
jokerhoney完成签到,获得积分10
8分钟前
8分钟前
9分钟前
Sunny完成签到,获得积分10
10分钟前
keyan完成签到 ,获得积分10
10分钟前
一个小胖子完成签到,获得积分10
10分钟前
天凉王破完成签到 ,获得积分10
10分钟前
孙燕应助科研通管家采纳,获得10
11分钟前
葛力发布了新的文献求助10
11分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603