Machine Learning and Prediction of All-Cause Mortality in COPD

医学 慢性阻塞性肺病 伯德指数 内科学 心脏病学 死亡率 物理疗法 肺康复
作者
Matthew Moll,Dandi Qiao,Elizabeth A. Regan,Gary M. Hunninghake,Barry J. Make,Ruth Tal‐Singer,Michael J. McGeachie,Peter J. Castaldi,Raúl San Jośe Estépar,George R. Washko,J. Michael Wells,David C. LaFon,Matthew Strand,Russell P. Bowler,MeiLan K. Han,Jørgen Vestbo,Bartolomé R. Celli,Peter M.A. Calverley,James D. Crapo,Edwin K. Silverman
出处
期刊:Chest [Elsevier BV]
卷期号:158 (3): 952-964 被引量:103
标识
DOI:10.1016/j.chest.2020.02.079
摘要

COPD is a leading cause of mortality.We hypothesized that applying machine learning to clinical and quantitative CT imaging features would improve mortality prediction in COPD.We selected 30 clinical, spirometric, and imaging features as inputs for a random survival forest. We used top features in a Cox regression to create a machine learning mortality prediction (MLMP) in COPD model and also assessed the performance of other statistical and machine learning models. We trained the models in subjects with moderate to severe COPD from a subset of subjects in Genetic Epidemiology of COPD (COPDGene) and tested prediction performance in the remainder of individuals with moderate to severe COPD in COPDGene and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We compared our model with the BMI, airflow obstruction, dyspnea, exercise capacity (BODE) index; BODE modifications; and the age, dyspnea, and airflow obstruction index.We included 2,632 participants from COPDGene and 1,268 participants from ECLIPSE. The top predictors of mortality were 6-min walk distance, FEV1 % predicted, and age. The top imaging predictor was pulmonary artery-to-aorta ratio. The MLMP-COPD model resulted in a C index ≥ 0.7 in both COPDGene and ECLIPSE (6.4- and 7.2-year median follow-ups, respectively), significantly better than all tested mortality indexes (P < .05). The MLMP-COPD model had fewer predictors but similar performance to that of other models. The group with the highest BODE scores (7-10) had 64% mortality, whereas the highest mortality group defined by the MLMP-COPD model had 77% mortality (P = .012).An MLMP-COPD model outperformed four existing models for predicting all-cause mortality across two COPD cohorts. Performance of machine learning was similar to that of traditional statistical methods. The model is available online at: https://cdnm.shinyapps.io/cgmortalityapp/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙友浩发布了新的文献求助10
刚刚
刚刚
杨宇完成签到,获得积分10
1秒前
electricelectric应助苏卿采纳,获得30
2秒前
缓慢冷风发布了新的文献求助10
2秒前
2秒前
3秒前
lemon完成签到 ,获得积分10
4秒前
最初发布了新的文献求助10
5秒前
5秒前
优雅老六发布了新的文献求助10
5秒前
lee完成签到,获得积分10
6秒前
阿发发布了新的文献求助10
6秒前
感动板凳发布了新的文献求助10
6秒前
乔垣结衣发布了新的文献求助10
6秒前
7秒前
Hou完成签到,获得积分10
7秒前
8秒前
科研通AI5应助大胖龙采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
茗牌棉花关注了科研通微信公众号
10秒前
zx完成签到,获得积分10
10秒前
周子荀完成签到,获得积分10
10秒前
11秒前
孙友浩发布了新的文献求助10
11秒前
12秒前
假面绅士发布了新的文献求助10
12秒前
KanaiRi关注了科研通微信公众号
12秒前
oylonq发布了新的文献求助30
12秒前
zx关闭了zx文献求助
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5168332
求助须知:如何正确求助?哪些是违规求助? 4360094
关于积分的说明 13575036
捐赠科研通 4206782
什么是DOI,文献DOI怎么找? 2307094
邀请新用户注册赠送积分活动 1306721
关于科研通互助平台的介绍 1253377