Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating

有限元法 结构健康监测 人工神经网络 鉴定(生物学) 人工智能 一致性(知识库) 机器学习 计算机科学 特征(语言学) 功能(生物学) 工程类 进化生物学 生物 结构工程 植物 哲学 语言学
作者
Zhiming Zhang,Chao Sun
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1675-1688 被引量:170
标识
DOI:10.1177/1475921720927488
摘要

Structural health monitoring methods are broadly classified into two categories: data-driven methods via statistical pattern recognition and physics-based methods through finite elementmodel updating. Data-driven structural health monitoring faces the challenge of data insufficiency that renders the learned model limited in identifying damage scenarios that are not contained in the training data. Model-based methods are susceptible to modeling error due to model idealizations and simplifications that make the finite element model updating results deviate from the truth. This study attempts to combine the merits of data-driven and physics-based structural health monitoring methods via physics-guided machine learning, expecting that the damage identification performance can be improved. Physics-guided machine learning uses observed feature data with correct labels as well as the physical model output of unlabeled instances. In this study, physics-guided machine learning is realized with a physics-guided neural network. The original modal-property based features are extended with the damage identification result of finite element model updating. A physics-based loss function is designed to evaluate the discrepancy between the neural network model output and that of finite element model updating. With the guidance from the scientific knowledge contained in finite element model updating, the learned neural network model has the potential to improve the generality and scientific consistency of the damage detection results. The proposed methodology is validated by a numerical case study on a steel pedestrian bridge model and an experimental study on a three-story building model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助切尔顿采纳,获得30
刚刚
烂漫的雁开完成签到,获得积分20
刚刚
wml完成签到,获得积分20
1秒前
coco完成签到,获得积分10
1秒前
1秒前
鱿鱼完成签到,获得积分10
1秒前
Kayla完成签到,获得积分10
1秒前
hhh完成签到,获得积分20
2秒前
ZZG应助快乐的远航采纳,获得30
2秒前
suriguga323发布了新的文献求助10
2秒前
3秒前
JamesPei应助Kayla采纳,获得10
4秒前
5秒前
BowieHuang应助wml采纳,获得10
5秒前
6秒前
6秒前
Luna发布了新的文献求助10
7秒前
飘逸的沛柔完成签到,获得积分10
7秒前
8秒前
ZHI发布了新的文献求助10
8秒前
冰渊悬月完成签到,获得积分10
8秒前
科研通AI6.1应助小匹夫采纳,获得10
8秒前
9秒前
9秒前
小蘑菇应助Bailan采纳,获得10
10秒前
永日安宁完成签到,获得积分10
10秒前
10秒前
11秒前
jia发布了新的文献求助30
11秒前
11秒前
华仔应助俭朴的三德采纳,获得10
11秒前
11秒前
田様应助lex采纳,获得10
12秒前
12秒前
天天快乐应助研猫采纳,获得10
13秒前
xioabu完成签到,获得积分10
13秒前
1234发布了新的文献求助10
14秒前
于归发布了新的文献求助20
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744001
求助须知:如何正确求助?哪些是违规求助? 5417286
关于积分的说明 15348919
捐赠科研通 4884487
什么是DOI,文献DOI怎么找? 2625910
邀请新用户注册赠送积分活动 1574683
关于科研通互助平台的介绍 1531562