fPINNs: Fractional Physics-Informed Neural Networks

数学 离散化 强迫(数学) 分数阶微积分 黑匣子 计算机科学 整数(计算机科学) 均方误差 算法 应用数学 数学分析 数学优化 统计 人工智能 程序设计语言
作者
Guofei Pang,Lu Lu,George Em Karniadakis
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:41 (4): A2603-A2626 被引量:687
标识
DOI:10.1137/18m1229845
摘要

Physics-informed neural networks (PINNs) are effective in solving integer-order partial differential equations (PDEs) based on scattered and noisy data. PINNs employ standard feedforward neural networks (NNs) with the PDEs explicitly encoded into the NN using automatic differentiation, while the sum of the mean-squared PDE-residuals and the mean-squared error in initial/boundary conditions is minimized with respect to the NN parameters. We extend PINNs to fractional PINNs (fPINNs) to solve space-time fractional advection-diffusion equations (fractional ADEs), and we demonstrate their accuracy and effectiveness in solving multi-dimensional forward and inverse problems with forcing terms whose values are only known at randomly scattered spatio-temporal coordinates (black-box forcing terms). A novel element of the fPINNs is the hybrid approach that we introduce for constructing the residual in the loss function using both automatic differentiation for the integer-order operators and numerical discretization for the fractional operators. We consider 1D time-dependent fractional ADEs and compare white-box (WB) and black-box (BB) forcing. We observe that for the BB forcing fPINNs outperform FDM. Subsequently, we consider multi-dimensional time-, space-, and space-time-fractional ADEs using the directional fractional Laplacian and we observe relative errors of $10^{-4}$. Finally, we solve several inverse problems in 1D, 2D, and 3D to identify the fractional orders, diffusion coefficients, and transport velocities and obtain accurate results even in the presence of significant noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘倩完成签到,获得积分10
刚刚
MichaelQin发布了新的文献求助10
1秒前
赘婿应助靓丽的熠彤采纳,获得10
1秒前
1秒前
华仔应助GLN采纳,获得10
1秒前
1秒前
D.lon发布了新的文献求助10
1秒前
郑恩熙发布了新的文献求助10
2秒前
2秒前
加百莉发布了新的文献求助10
2秒前
共享精神应助wenpengyun采纳,获得10
3秒前
LuoYixiang完成签到,获得积分10
3秒前
4秒前
Zll完成签到,获得积分10
4秒前
4秒前
万能图书馆应助轩辕沛柔采纳,获得10
4秒前
Dallas发布了新的文献求助10
5秒前
shengChen发布了新的文献求助10
5秒前
风趣不正发布了新的文献求助10
5秒前
6秒前
Emma应助飞乐扣采纳,获得10
6秒前
6秒前
yjr发布了新的文献求助10
7秒前
CodeCraft应助大聪明采纳,获得10
8秒前
一只蓉馍馍完成签到,获得积分10
8秒前
Darwin111完成签到,获得积分20
8秒前
伍思光发布了新的文献求助10
8秒前
张岱帅z完成签到,获得积分10
9秒前
汉堡包应助激昂的青采纳,获得10
9秒前
9秒前
9秒前
AdamJie发布了新的文献求助10
11秒前
健壮念寒发布了新的文献求助10
11秒前
11秒前
北海qy完成签到,获得积分10
11秒前
11秒前
小二郎应助郁金香采纳,获得10
12秒前
甜蜜的楷瑞应助llllll采纳,获得10
12秒前
搞怪楼房完成签到,获得积分20
12秒前
完美世界应助kenna123采纳,获得10
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063856
求助须知:如何正确求助?哪些是违规求助? 3602290
关于积分的说明 11440705
捐赠科研通 3325417
什么是DOI,文献DOI怎么找? 1828098
邀请新用户注册赠送积分活动 898566
科研通“疑难数据库(出版商)”最低求助积分说明 819103