Weighted Tensor Low-Rankness and Learnable Analysis Sparse Representation Model for Texture Preserving Low-Dose CT Reconstruction

矩阵范数 迭代重建 张量(固有定义) 算法 数学 模式识别(心理学) 子空间拓扑 稀疏逼近 计算机科学 人工智能 量子力学 物理 特征向量 纯数学
作者
Yuanke Zhang,Dong Zeng,Zhaoying Bian,Hongbing Lu,Jianhua Ma
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 321-336 被引量:10
标识
DOI:10.1109/tci.2021.3054249
摘要

In CT images, tissue structures and lesion changes illustrate evident non-local self-similarity and regionally constant properties. The low-rank model and the learnable sparse representation model are powerful tools that can respectively encode the correlations among non-local similar patches and the sparsity in a local transformed subspace about the underlying CT image. Existing Model-Based Iterative Reconstruction (MBIR) methods generally adopt one of the two models alone for CT reconstruction, which might suffer from modelling deficiency and hampers their reconstruction performance. In this study, we presented a novel Weighted Tensor Low-Rank and Learnable Analysis Sparse Representation model (WTLR-LASR) to simultaneously encode the non-local correlations and local transformed sparsity natures. Specifically, we developed a novel Weighted Tensor Nuclear Norm Minimization (WTNNM) formulation to characterize the weighted tensor low-rank model, and introduced the Weighted Tensor Nuclear Norm Proximal (WTNNP) operator to solve the non-convex WTNNM problem. We further proved that the WTNNP problem can be equivalently transformed to a weighted matrix nuclear norm proximal (WMNNP) problem in the Fourier transform domain, which allowed us to easily reach the closed-form optimum of the WTNNP problem. We proposed a novel CT reconstruction algorithm based on the presented WTLR-LASR model. We also introduced a genetic algorithm to automatically select the parameters in the proposed algorithm. Extensive experimental studies were performed to validate the effectiveness of the proposed algorithm. The results demonstrate that the proposed algorithm can achieve noticeable improvements over state-of-the-art methods in terms of noise suppression and textures preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thth发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
不想干活应助dddd采纳,获得10
3秒前
mate发布了新的文献求助30
3秒前
景行行止发布了新的文献求助10
4秒前
shufessm完成签到,获得积分0
4秒前
小缓发布了新的文献求助10
5秒前
詹远望发布了新的文献求助10
6秒前
吞吞发布了新的文献求助10
6秒前
无花果应助duanhahaha采纳,获得10
7秒前
搜集达人应助lrl采纳,获得10
8秒前
gaigai发布了新的文献求助10
10秒前
珂珂发布了新的文献求助10
11秒前
尹冰之完成签到,获得积分10
11秒前
大头完成签到,获得积分10
12秒前
专一的白开水完成签到 ,获得积分20
12秒前
13秒前
thth完成签到,获得积分10
13秒前
13秒前
jiang完成签到,获得积分10
13秒前
14秒前
lrl完成签到,获得积分20
15秒前
白江虎发布了新的文献求助10
16秒前
Coco发布了新的文献求助10
17秒前
英俊的铭应助mate采纳,获得30
17秒前
lingua应助mate采纳,获得30
17秒前
千倾发布了新的文献求助10
18秒前
尼古丁真应助娇气的雁兰采纳,获得10
19秒前
duanhahaha发布了新的文献求助10
19秒前
mao完成签到,获得积分10
20秒前
22秒前
mao发布了新的文献求助10
24秒前
hh完成签到,获得积分10
25秒前
ccc完成签到 ,获得积分10
25秒前
25秒前
852应助sqc采纳,获得10
25秒前
su发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4482099
求助须知:如何正确求助?哪些是违规求助? 3938262
关于积分的说明 12217489
捐赠科研通 3593432
什么是DOI,文献DOI怎么找? 1976124
邀请新用户注册赠送积分活动 1013292
科研通“疑难数据库(出版商)”最低求助积分说明 906480