Position-Transitional Particle Swarm Optimization-Incorporated Latent Factor Analysis

粒子群优化 计算机科学 随机梯度下降算法 收敛速度 梯度下降 趋同(经济学) 人工智能 职位(财务) 过程(计算) 群体行为 算法 机器学习 数据挖掘 人工神经网络 钥匙(锁) 财务 计算机安全 经济 经济增长 操作系统
作者
Xin Luo,Ye Yuan,Sili Chen,Nianyin Zeng,Zidong Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (8): 3958-3970 被引量:193
标识
DOI:10.1109/tkde.2020.3033324
摘要

High-dimensional and sparse (HiDS) matrices are frequently found in various industrial applications. A latent factor analysis (LFA) model is commonly adopted to extract useful knowledge from an HiDS matrix, whose parameter training mostly relies on a stochastic gradient descent (SGD) algorithm. However, an SGD-based LFA model's learning rate is hard to tune in real applications, making it vital to implement its self-adaptation. To address this critical issue, this study firstly investigates the evolution process of a particle swarm optimization algorithm with care, and then proposes to incorporate more dynamic information into it for avoiding accuracy loss caused by premature convergence without extra computation burden, thereby innovatively achieving a novel position-transitional particle swarm optimization (P 2 SO) algorithm. It is subsequently adopted to implement a P 2 SO-based LFA (PLFA) model that builds a learning rate swarm applied to the same group of LFs. Thus, a PLFA model implements highly efficient learning rate adaptation as well as represents an HiDS matrix precisely. Experimental results on four HiDS matrices emerging from real applications demonstrate that compared with an SGD-based LFA model, a PLFA model no longer suffers from a tedious and expensive tuning process of its learning rate, and it can achieve even higher prediction accuracy for missing data of an HiDS matrix. On the other hand, compared with state-of-the-art adaptive LFA models, a PLFA model's prediction accuracy and computational efficiency are highly competitive. Hence, it has high potential in addressing real industrial issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八森木完成签到 ,获得积分0
刚刚
小白菜完成签到 ,获得积分10
3秒前
积极问晴完成签到,获得积分10
4秒前
4秒前
坦率夕阳完成签到,获得积分10
6秒前
kingwill举报RMY求助涉嫌违规
6秒前
7秒前
9秒前
10秒前
10秒前
铲铲完成签到,获得积分10
10秒前
10秒前
搜集达人应助墨殇采纳,获得10
13秒前
13秒前
14秒前
积极问晴发布了新的文献求助30
14秒前
阿树发布了新的文献求助10
15秒前
15秒前
善学以致用应助TJJ采纳,获得10
16秒前
hansa完成签到,获得积分0
16秒前
17秒前
彭于晏应助阿树采纳,获得10
20秒前
XL神放发布了新的文献求助10
21秒前
Luffa完成签到,获得积分10
21秒前
23秒前
曾经的贞完成签到,获得积分10
25秒前
albertchan完成签到,获得积分10
25秒前
坚强的夏瑶完成签到,获得积分20
25秒前
英姑应助Phi.Wang采纳,获得10
25秒前
123完成签到,获得积分10
26秒前
纯洁完成签到,获得积分10
26秒前
星辰大海应助mmmz采纳,获得10
26秒前
UU完成签到,获得积分10
27秒前
27秒前
星辰大海应助ILBY采纳,获得10
30秒前
新念发布了新的文献求助10
31秒前
32秒前
姜灭绝完成签到,获得积分10
32秒前
1012077054完成签到,获得积分10
33秒前
zouxiang发布了新的文献求助10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307