已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A numerical simulation method for bionic fish self-propelled swimming under control based on deep reinforcement learning

变形 计算机科学 弹道 离散化 运动学 联轴节(管道) 过程(计算) 模拟 人工智能 数学 物理 经典力学 工程类 数学分析 机械工程 操作系统 天文
作者
Yan Lang,Xinghua Chang,Runyu Tian,Nianhua Wang,Laiping Zhang,Wei Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:234 (17): 3397-3415 被引量:19
标识
DOI:10.1177/0954406220915216
摘要

In order to simulate the under control self-propelled swimming of bionic fishes, a coupling method of hydrodynamics/kinematics/motion-control is presented in this paper. The Navier-Stokes equations in the arbitrary Lagrangian-Eulerian framework are solved in parallel based on the computational domain decomposition to simulate the unsteady flow field efficiently. The flow dynamics is coupled with the fish dynamics in an implicit way by a dual-time stepping approach. In order to discretize the computational domain during a wide range maneuver, an overset grid approach with a parallel implicit hole-cutting technique is adopted and coupled with morphing hybrid grids around the undulation body. The motion control of the fish swimming is realized by a deep reinforcement learning algorithm, which makes the fish model choose proper undulation manner according to a specific purpose. By adding random disturbances in the training process of fish swimming along a straight line, a simplified two-dimensional fish model obtains the ability to swim along a specific trajectory. Then in subsequent tests, the two-dimensional fish model is able to swim along more complex curves with obstacles. Finally, the starting process of a three-dimensional tuna-like model is simulated preliminarily to validate the ability of the coupling method for three-dimensional complex configurations. The numerical results demonstrate that this study could be used to explore the swimming mechanism of fishes in complex environments and to guide how robotic fishes can be controlled to accomplish their tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助祖之微笑采纳,获得10
2秒前
科研通AI5应助祖之微笑采纳,获得30
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
打打应助发发发发发采纳,获得10
3秒前
NagatoYuki完成签到,获得积分10
3秒前
甲乙丙丁完成签到 ,获得积分10
5秒前
木子完成签到 ,获得积分10
5秒前
小木林完成签到 ,获得积分10
5秒前
5秒前
ying818k完成签到 ,获得积分10
5秒前
王子完成签到,获得积分10
8秒前
星落枝头发布了新的文献求助10
11秒前
fwy完成签到 ,获得积分10
12秒前
15秒前
19秒前
YAO完成签到 ,获得积分10
19秒前
霓娜酱完成签到 ,获得积分10
19秒前
汉堡包应助aaa采纳,获得10
20秒前
眼睛大的胡萝卜完成签到 ,获得积分10
21秒前
Rebekah完成签到,获得积分10
22秒前
23秒前
du完成签到 ,获得积分10
24秒前
失眠的霸发布了新的文献求助10
24秒前
lizhiqian2024发布了新的文献求助10
28秒前
爆米花应助失眠的霸采纳,获得10
33秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
33秒前
zc完成签到,获得积分10
34秒前
夕沫发布了新的文献求助50
38秒前
上官若男应助bastien采纳,获得10
42秒前
英俊的铭应助夕沫采纳,获得10
46秒前
48秒前
wwwteng呀完成签到,获得积分10
50秒前
玛卡巴卡发布了新的文献求助10
51秒前
大象炖土豆完成签到,获得积分10
51秒前
52秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782572
求助须知:如何正确求助?哪些是违规求助? 3327957
关于积分的说明 10234005
捐赠科研通 3042953
什么是DOI,文献DOI怎么找? 1670358
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758919