Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks

医学 卷积神经网络 豪斯多夫距离 分割 Sørensen–骰子系数 百分位 放射治疗 人工智能 乳腺癌 放射科 癌症 计算机科学 图像分割 数学 内科学 统计
作者
Zhikai Liu,FangJie Liu,Wanqi Chen,Xia Liu,Xiaorong Hou,Jing Shen,Hui Guan,Hongnan Zhen,Shaobin Wang,Qi Chen,Chen Yu,Fuquan Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:10: 581347-581347 被引量:25
标识
DOI:10.3389/fonc.2020.581347
摘要

Background This study aims to construct and validate a model based on convolutional neural networks (CNNs), which can fulfil the automatic segmentation of clinical target volumes (CTVs) of breast cancer for radiotherapy. Methods In this work, computed tomography (CT) scans of 110 patients who underwent modified radical mastectomies were collected. The CTV contours were confirmed by two experienced oncologists. A novel CNN was constructed to automatically delineate the CTV. Quantitative evaluation metrics were calculated, and a clinical evaluation was conducted to evaluate the performance of our model. Results The mean Dice similarity coefficient (DSC) of the proposed model was 0.90, and the 95th percentile Hausdorff distance (95HD) was 5.65 mm. The evaluation results of the two clinicians showed that 99.3% of the chest wall CTV slices could be accepted by clinician A, and this number was 98.9% for clinician B. In addition, 9/10 of patients had all slices accepted by clinician A, while 7/10 could be accepted by clinician B. The score differences between the AI (artificial intelligence) group and the GT (ground truth) group showed no statistically significant difference for either clinician. However, the score differences in the AI group were significantly different between the two clinicians. The Kappa consistency index was 0.259. It took 3.45 s to delineate the chest wall CTV using the model. Conclusion Our model could automatically generate the CTVs for breast cancer. AI-generated structures of the proposed model showed a trend that was comparable, or was even better, than those of human-generated structures. Additional multicentre evaluations should be performed for adequate validation before the model can be completely applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助怪蜀黍采纳,获得10
2秒前
朱珏虹发布了新的文献求助10
2秒前
mo完成签到,获得积分10
2秒前
2秒前
3秒前
大闲鱼铭一完成签到 ,获得积分10
3秒前
3秒前
Owen应助xie采纳,获得10
3秒前
4秒前
科研通AI6应助细腻戒指采纳,获得10
4秒前
欣欣欣欣完成签到,获得积分10
4秒前
4秒前
你好完成签到,获得积分10
4秒前
5秒前
6秒前
司空以蕊发布了新的文献求助10
6秒前
hao发布了新的文献求助10
6秒前
7秒前
科研通AI6应助京墨采纳,获得10
7秒前
刘玉欣发布了新的文献求助10
7秒前
伍小南完成签到,获得积分10
7秒前
浮生若梦应助隐形的星月采纳,获得10
7秒前
朱珏虹完成签到,获得积分10
8秒前
llly完成签到,获得积分10
8秒前
杨三多发布了新的文献求助10
8秒前
镓氧锌钇铀应助郭嘉仪采纳,获得10
9秒前
10秒前
星辰发布了新的文献求助10
10秒前
Rita发布了新的文献求助10
10秒前
nkr完成签到,获得积分10
10秒前
10秒前
11秒前
H与K发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
6x1完成签到,获得积分10
13秒前
852应助优乐美采纳,获得10
15秒前
15秒前
凌会香完成签到,获得积分10
16秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114