已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer

医学 队列 无线电技术 逻辑回归 判别式 人工智能 结直肠癌 置信区间 威尔科克森符号秩检验 癌症 肿瘤科 内科学 放射科 曼惠特尼U检验 计算机科学
作者
Xiaomei Wu,Yajun Li,Xin Chen,Yanqi Huang,Lan He,Ke Zhao,Xiaomei Huang,Wen Zhang,Yujuan Huang,Yexing Li,Mei Dong,Jia Huang,Ting Xia,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:27 (11): e254-e262 被引量:47
标识
DOI:10.1016/j.acra.2019.12.007
摘要

Rationale and Objectives We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). Materials and Methods The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. Results The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658–0.776) for the primary cohort and 0.720 (95% CI: 0.625–0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696–0.813) for the primary cohort and 0.786 (95% CI: 0.702–0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766–0.868) for the primary cohort and 0.832 (95% CI: 0.762–0.905) for the validation cohort. Conclusion This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC. We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658–0.776) for the primary cohort and 0.720 (95% CI: 0.625–0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696–0.813) for the primary cohort and 0.786 (95% CI: 0.702–0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766–0.868) for the primary cohort and 0.832 (95% CI: 0.762–0.905) for the validation cohort. This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
p53完成签到,获得积分10
2秒前
zhou完成签到,获得积分10
4秒前
123789完成签到,获得积分10
4秒前
ccl完成签到,获得积分20
6秒前
谦让傲菡完成签到 ,获得积分10
7秒前
8秒前
小何完成签到,获得积分10
9秒前
Wang_JN完成签到 ,获得积分10
12秒前
12秒前
12秒前
immortal发布了新的文献求助10
15秒前
动漫大师发布了新的文献求助10
16秒前
阔达碧空发布了新的文献求助10
16秒前
霜降完成签到 ,获得积分10
17秒前
FashionBoy应助csy采纳,获得10
30秒前
crainbowc完成签到,获得积分10
33秒前
粗心的易云完成签到 ,获得积分10
38秒前
明天留123应助科研通管家采纳,获得50
40秒前
斯文败类应助科研通管家采纳,获得10
40秒前
ukz37752应助科研通管家采纳,获得30
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
shimhjy应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
40秒前
坚强的纸飞机完成签到,获得积分10
46秒前
QIAN完成签到,获得积分10
48秒前
48秒前
51秒前
大明完成签到 ,获得积分10
51秒前
苞大米完成签到,获得积分10
51秒前
不与仙同完成签到 ,获得积分10
52秒前
追求者发布了新的文献求助10
53秒前
枫七完成签到,获得积分10
54秒前
55秒前
zhoahai完成签到 ,获得积分10
56秒前
aman完成签到,获得积分10
59秒前
1分钟前
nemo发布了新的文献求助30
1分钟前
爆米花应助PCX采纳,获得10
1分钟前
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352657
关于积分的说明 10359883
捐赠科研通 3068640
什么是DOI,文献DOI怎么找? 1685169
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022