Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study

社会化媒体 中国大陆 时间轴 2019年冠状病毒病(COVID-19) 预测能力 中国 china mainland 观察研究 社会距离 医学 地理 计算机科学 疾病 病理 考古 哲学 万维网 传染病(医学专业) 认识论
作者
Cuihua Shen,Anfan Chen,Chen Luo,Jingwen Zhang,Bo Feng,Wang Liao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:22 (5): e19421-e19421 被引量:156
标识
DOI:10.2196/19421
摘要

Can public social media data be harnessed to predict COVID-19 case counts? We analyzed approximately 15 million COVID-19 related posts on Weibo, a popular Twitter-like social media platform in China, from November 1, 2019 to March 31, 2020. We developed a machine learning classifier to identify "sick posts," which are reports of one's own and other people's symptoms and diagnosis related to COVID-19. We then modeled the predictive power of sick posts and other COVID-19 posts on daily case counts. We found that reports of symptoms and diagnosis of COVID-19 significantly predicted daily case counts, up to 14 days ahead of official statistics. But other COVID-19 posts did not have similar predictive power. For a subset of geotagged posts (3.10% of all retrieved posts), we found that the predictive pattern held true for both Hubei province and the rest of mainland China, regardless of unequal distribution of healthcare resources and outbreak timeline. Researchers and disease control agencies should pay close attention to the social media infosphere regarding COVID-19. On top of monitoring overall search and posting activities, it is crucial to sift through the contents and efficiently identify true signals from noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
999999发布了新的文献求助10
1秒前
2秒前
ecnu搬砖人发布了新的文献求助10
2秒前
大米完成签到,获得积分10
3秒前
3秒前
困困困完成签到,获得积分10
4秒前
慕青应助大脸萌采纳,获得10
7秒前
平常的毛豆应助wangwang采纳,获得10
8秒前
肆陆发布了新的文献求助10
9秒前
李健的小迷弟应助cj采纳,获得10
9秒前
Freeman0721完成签到,获得积分10
9秒前
9秒前
Seven完成签到,获得积分10
12秒前
kimikoi完成签到,获得积分10
13秒前
qczgzly发布了新的文献求助10
15秒前
阿航完成签到,获得积分10
16秒前
快来拾糖完成签到 ,获得积分10
20秒前
奈克罗普陀西斯完成签到,获得积分10
20秒前
qczgzly完成签到,获得积分10
21秒前
城南她似海完成签到 ,获得积分10
21秒前
上官若男应助Qzy采纳,获得10
22秒前
Orange应助liujinjin采纳,获得10
23秒前
顾矜应助duuuuuu采纳,获得10
26秒前
丘比特应助huihui采纳,获得10
27秒前
27秒前
29秒前
30秒前
31秒前
Ronnie完成签到,获得积分10
32秒前
35秒前
王杰发布了新的文献求助10
35秒前
Ronnie发布了新的文献求助10
35秒前
liujinjin发布了新的文献求助10
36秒前
负责的方盒完成签到,获得积分20
37秒前
科研通AI2S应助勤奋的姒采纳,获得30
37秒前
39秒前
kuyu2完成签到 ,获得积分20
39秒前
hehehe85200完成签到,获得积分10
40秒前
大气的乌冬面完成签到,获得积分10
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757