Dual-branch residual network for lung nodule segmentation

人工智能 计算机科学 体素 分割 模式识别(心理学) 残余物 联营 块(置换群论) 相似性(几何) 卷积神经网络 结核(地质) Sørensen–骰子系数 图像分割 计算机视觉 数学 图像(数学) 算法 生物 几何学 古生物学
作者
Haichao Cao,Feng Yu,Haichao Cao,Chih‐Cheng Hung,Guangzhi Ma,Xiangyang Xu,Renchao Jin,Jianguo Lü
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:86: 105934-105934 被引量:102
标识
DOI:10.1016/j.asoc.2019.105934
摘要

An accurate segmentation of lung nodules in computed tomography (CT) images is critical to lung cancer analysis and diagnosis. However, due to the variety of lung nodules and the similarity of visual characteristics between nodules and their surroundings, a robust segmentation of nodules becomes a challenging problem. In this study, we propose the Dual-branch Residual Network (DB-ResNet) which is a data-driven model. Our approach integrates two new schemes to improve the generalization capability of the model: (1) the proposed model can simultaneously capture multi-view and multi-scale features of different nodules in CT images; (2) we combine the features of the intensity and the convolutional neural networks (CNN). We propose a pooling method, called the central intensity-pooling layer (CIP), to extract the intensity features of the center voxel of the block, and then use the CNN to obtain the convolutional features of the center voxel of the block. In addition, we designed a weighted sampling strategy based on the boundary of nodules for the selection of those voxels using the weighting score, to increase the accuracy of the model. The proposed method has been extensively evaluated on the LIDC-IDRI dataset containing 986 nodules. Experimental results show that the DB-ResNet achieves superior segmentation performance with the dice similarity coefficient (DSC) of 82.74% on the dataset. Moreover, we compared our results with those of four radiologists on the same dataset. The comparison showed that our DSC was 0.49% higher than that of human experts. This proves that our proposed method is as good as the experienced radiologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助tian采纳,获得30
刚刚
心灵美的修洁完成签到 ,获得积分10
刚刚
顾矜应助jake采纳,获得10
1秒前
ZYH完成签到 ,获得积分10
2秒前
3秒前
3秒前
xiaoliuyaonuli完成签到,获得积分10
4秒前
失眠的哈密瓜完成签到,获得积分10
4秒前
执着白云完成签到,获得积分10
6秒前
万能图书馆应助医路有你采纳,获得10
8秒前
shuang发布了新的文献求助10
8秒前
迅速海云完成签到,获得积分10
8秒前
NI发布了新的文献求助10
8秒前
老朱完成签到,获得积分10
8秒前
10秒前
YuJianQiao完成签到,获得积分10
12秒前
此君关注了科研通微信公众号
13秒前
13秒前
王王完成签到 ,获得积分10
13秒前
端庄千琴完成签到,获得积分10
14秒前
知性的雅彤完成签到,获得积分10
14秒前
tian发布了新的文献求助30
15秒前
genomed应助xiekunwhy采纳,获得10
16秒前
梦月完成签到,获得积分10
16秒前
香蕉觅云应助不想看文献采纳,获得10
16秒前
阿言发布了新的文献求助50
17秒前
ttttsy完成签到 ,获得积分10
17秒前
孤海未蓝完成签到,获得积分10
19秒前
缥缈纲应助SC采纳,获得10
20秒前
23秒前
查丽完成签到 ,获得积分10
23秒前
怕孤单的初蝶完成签到,获得积分10
23秒前
认真的不评完成签到,获得积分10
24秒前
哈哈哈完成签到,获得积分10
25秒前
29秒前
医路有你发布了新的文献求助10
30秒前
30秒前
30秒前
labordoc完成签到,获得积分10
30秒前
31秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728