The value of information for price dependent demand

经济 价值(数学) 微观经济学 预订价格
作者
Zhengwei Sun,Andrea C. Hupman,Ali E. Abbas
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:288 (2): 511-522 被引量:3
标识
DOI:10.1016/j.ejor.2020.05.057
摘要

Abstract Predicting demand and determining optimal pricing are essential components of operations management. It is often useful to think in terms of the price elasticity of demand when reasoning about the demand curve. Firms wishing to invest in demand prediction and information gathering should reason about the relationship between the expected value of perfect information (EVPI) on demand and demand elasticity. Should firms pay more/less for information on demand if elasticity is high/low? Furthermore, when considering different product prices, correlation may exist between demand at different prices. Should firms pay more/less for information if the correlation between demand at different prices is high or low? This paper derives analytic and numeric results to answer these questions. We start with the assumption that demand is uncertain and follows a uniformly distributed band around a deterministic demand curve where the upper and lower bounds of the demand distribution vary with price. This formulation enables a closed form expression for EVPI that provides a useful benchmark. We find nuanced behavior of EVPI that depends on both the elasticity and the initial price preference. The EVPI approaches zero as elasticity increases (decreases) for a firm that initially prefers the low (high) price. Numerical results using the truncated normal and beta distributions relax assumptions about the uniform distribution and show EVPI is similar when the distribution variances are similar. Finally, we relax the assumption of perfect information and show the expected value of imperfect information (EVOI) follows similar patterns as EVPI with respect to demand elasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小熊发布了新的文献求助10
1秒前
kk99123应助Steven采纳,获得10
2秒前
波鲁鲁爱喝酸奶应助iiiau采纳,获得10
5秒前
大模型应助tututu采纳,获得10
6秒前
谣谣完成签到,获得积分10
6秒前
读书酱完成签到 ,获得积分10
7秒前
8秒前
卷卷完成签到,获得积分10
12秒前
田様应助胡胡采纳,获得10
12秒前
白斯特发布了新的文献求助30
13秒前
zzz关闭了zzz文献求助
14秒前
14秒前
薇薇发布了新的文献求助10
14秒前
yuyingzheng完成签到,获得积分10
17秒前
舒心飞珍完成签到,获得积分10
19秒前
qiqi发布了新的文献求助10
19秒前
19秒前
研友_VZG7GZ应助彩色的蓝天采纳,获得10
20秒前
CodeCraft应助舒心的白开水采纳,获得10
21秒前
万能图书馆应助chao采纳,获得200
22秒前
22秒前
22秒前
龚仕杰完成签到 ,获得积分10
22秒前
薇薇完成签到,获得积分10
25秒前
25秒前
于骁应助甜蜜的冰枫采纳,获得10
26秒前
frank发布了新的文献求助10
31秒前
小鱼儿发布了新的文献求助10
31秒前
扶我起来写论文完成签到 ,获得积分10
32秒前
33秒前
33秒前
搜集达人应助科研小菜鸟采纳,获得30
33秒前
CipherSage应助yongzaizhuigan采纳,获得10
34秒前
36秒前
40秒前
甜蜜的甜瓜完成签到,获得积分10
40秒前
群青完成签到,获得积分20
41秒前
领导范儿应助Shuo采纳,获得10
45秒前
46秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084066
求助须知:如何正确求助?哪些是违规求助? 3623173
关于积分的说明 11493721
捐赠科研通 3337751
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903649
科研通“疑难数据库(出版商)”最低求助积分说明 821768