Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms

卷积神经网络 计算机辅助诊断 子宫内膜 子宫内膜癌 人工智能 可解释性 医学 模式识别(心理学) 腺癌 医学诊断 计算机科学 放射科 癌症 内科学
作者
Hao Sun,Xianxu Zeng,Tao Xu,Gang Peng,Yutao Ma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 1664-1676 被引量:114
标识
DOI:10.1109/jbhi.2019.2944977
摘要

Uterine cancer, also known as endometrial cancer, can seriously affect the female reproductive organs, and histopathological image analysis is the gold standard for diagnosing endometrial cancer. However, due to the limited capability of modeling the complicated relationships between histopathological images and their interpretations, these computer-aided diagnosis (CADx) approaches based on traditional machine learning algorithms often failed to achieve satisfying results. In this study, we developed a CADx approach using a convolutional neural network (CNN) and attention mechanisms, called HIENet. Because HIENet used the attention mechanisms and feature map visualization techniques, it can provide pathologists better interpretability of diagnoses by highlighting the histopathological correlations of local (pixel-level) image features to morphological characteristics of endometrial tissue. In the ten-fold cross-validation process, the CADx approach, HIENet, achieved a 76.91 $\pm$ 1.17% (mean $\pm$ s. d.) classification accuracy for four classes of endometrial tissue, namely normal endometrium, endometrial polyp, endometrial hyperplasia, and endometrial adenocarcinoma. Also, HIENet achieved an area-under-the-curve (AUC) of 0.9579 $\pm$ 0.0103 with an 81.04 $\pm$ 3.87% sensitivity and 94.78 $\pm$ 0.87% specificity in a binary classification task that detected endometrioid adenocarcinoma (Malignant). Besides, in the external validation process, HIENet achieved an 84.50% accuracy in the four-class classification task, and it achieved an AUC of 0.9829 with a 77.97% (95% CI, 65.27%-87.71%) sensitivity and 100% (95% CI, 97.42%-100.00%) specificity. In summary, the proposed CADx approach, HIENet, outperformed three human experts and four end-to-end CNN-based classifiers on this small-scale dataset composed of 3,500 hematoxylin and eosin (H&E) images regarding overall classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助hhhhhh采纳,获得10
刚刚
漂亮的大神完成签到,获得积分10
1秒前
个性松发布了新的文献求助10
1秒前
1秒前
害怕的语柔完成签到,获得积分10
1秒前
zzzzzzzp发布了新的文献求助30
1秒前
香蕉觅云应助猫小乐C采纳,获得10
2秒前
充电宝应助欢喜大地采纳,获得10
2秒前
2秒前
yy完成签到,获得积分10
3秒前
yar应助梵樱采纳,获得10
3秒前
crosl发布了新的文献求助10
3秒前
溜了溜了完成签到,获得积分10
3秒前
歪比巴卜完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
小超人发布了新的文献求助10
4秒前
淡定草丛完成签到 ,获得积分10
4秒前
4秒前
4秒前
ghroth完成签到,获得积分10
5秒前
5秒前
勤恳的一斩完成签到,获得积分10
5秒前
CipherSage应助草莓伯伯采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
FelixChen应助科研通管家采纳,获得10
5秒前
FelixChen应助科研通管家采纳,获得10
5秒前
FelixChen应助科研通管家采纳,获得10
6秒前
FelixChen应助科研通管家采纳,获得10
6秒前
CR7应助科研通管家采纳,获得20
6秒前
6秒前
zpz完成签到,获得积分10
6秒前
6秒前
小小博应助科研通管家采纳,获得10
6秒前
spf完成签到,获得积分10
6秒前
cryjslong完成签到,获得积分10
6秒前
6秒前
FelixChen应助科研通管家采纳,获得10
6秒前
CR7应助科研通管家采纳,获得20
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
Young发布了新的文献求助10
7秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886144
求助须知:如何正确求助?哪些是违规求助? 3428265
关于积分的说明 10759171
捐赠科研通 3153061
什么是DOI,文献DOI怎么找? 1740829
邀请新用户注册赠送积分活动 840369
科研通“疑难数据库(出版商)”最低求助积分说明 785348