Avoiding monotony

计算机科学
作者
Mi Zhang,Neil Hurley
标识
DOI:10.1145/1454008.1454030
摘要

The primary premise upon which top-N recommender systems operate is that similar users are likely to have similar tastes with regard to their product choices. For this reason, recommender algorithms depend deeply on similarity metrics to build the recommendation lists for end-users.However, it has been noted that the products offered on recommendation lists are often too similar to each other and attention has been paid towards the goal of improving diversity to avoid monotonous recommendations.Noting that the retrieval of a set of items matching a user query is a common problem across many applications of information retrieval, we model the competing goals of maximizing the diversity of the retrieved list while maintaining adequate similarity to the user query as a binary optimization problem. We explore a solution strategy to this optimization problem by relaxing it to a trust-region problem.This leads to a parameterized eigenvalue problem whose solution is finally quantized to the required binary solution. We apply this approach to the top-N prediction problem, evaluate the system performance on the Movielens dataset and compare it with a standard item-based top-N algorithm. A new evaluation metric ItemNovelty is proposed in this work. Improvements on both diversity and accuracy are obtained compared to the benchmark algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dydxf完成签到,获得积分10
刚刚
刚刚
dedex发布了新的文献求助10
刚刚
zhabgyucheng发布了新的文献求助10
1秒前
1秒前
lilili应助123采纳,获得10
2秒前
4秒前
4秒前
曾经的慕灵完成签到,获得积分10
4秒前
4秒前
5秒前
WT完成签到,获得积分10
6秒前
6秒前
sunny发布了新的文献求助10
6秒前
善良的靖易应助卡耐基采纳,获得10
8秒前
华仔应助scugy采纳,获得10
8秒前
科研通AI6应助cc采纳,获得10
8秒前
WEI发布了新的文献求助10
8秒前
9秒前
9秒前
小天完成签到,获得积分10
9秒前
Guang完成签到,获得积分10
11秒前
siyu发布了新的文献求助10
12秒前
FashionBoy应助XXXX采纳,获得10
13秒前
科研通AI2S应助Pupil采纳,获得30
13秒前
13秒前
15秒前
不知名医学生完成签到,获得积分10
16秒前
秃顶水箭龟完成签到,获得积分10
16秒前
Churchill87426完成签到,获得积分10
17秒前
18秒前
x2222发布了新的文献求助10
19秒前
19秒前
DDD完成签到 ,获得积分10
20秒前
20秒前
loser完成签到,获得积分10
21秒前
aziya发布了新的文献求助10
21秒前
掌上三寸完成签到,获得积分10
21秒前
庸人自扰完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913