亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research of fetal ECG extraction using wavelet analysis and adaptive filtering

小波 计算机科学 最小均方滤波器 算法 模式识别(心理学) 小波变换 人工智能 自适应滤波器 数学 噪音(视频) 图像(数学)
作者
Shuicai Wu,Yanni Shen,Zhuhuang Zhou,Lan Lin,Yanjun Zeng,Xiaofeng Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:43 (10): 1622-1627 被引量:91
标识
DOI:10.1016/j.compbiomed.2013.07.028
摘要

Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
idiom完成签到 ,获得积分10
4秒前
Hello应助family采纳,获得10
9秒前
10秒前
W29完成签到 ,获得积分10
12秒前
贪玩丸子发布了新的文献求助20
12秒前
14秒前
Lighters发布了新的文献求助10
15秒前
小白菜完成签到,获得积分10
16秒前
Lighters完成签到,获得积分10
24秒前
24秒前
25秒前
充电宝应助负责烤鸡采纳,获得10
27秒前
family发布了新的文献求助10
28秒前
蕾蕾发布了新的文献求助30
31秒前
111发布了新的文献求助10
31秒前
34秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
ming完成签到,获得积分10
35秒前
英俊的铭应助科研通管家采纳,获得10
35秒前
36秒前
桐桐应助科研通管家采纳,获得10
36秒前
蕾蕾完成签到,获得积分10
36秒前
贪玩丸子完成签到,获得积分10
38秒前
42秒前
herococa完成签到,获得积分10
42秒前
gstaihn发布了新的文献求助10
49秒前
皮蛋robin汤完成签到 ,获得积分10
51秒前
今后应助family采纳,获得10
52秒前
53秒前
53秒前
健达完成签到,获得积分10
56秒前
111完成签到 ,获得积分10
57秒前
健达发布了新的文献求助10
59秒前
科研通AI5应助Carrots采纳,获得10
1分钟前
1分钟前
一路微笑完成签到,获得积分10
1分钟前
笨笨芯发布了新的文献求助10
1分钟前
舒远完成签到 ,获得积分10
1分钟前
amengptsd完成签到,获得积分10
1分钟前
豆壳儿完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468