信号处理
概率逻辑
计算机科学
模式识别(心理学)
高斯分布
人工智能
高斯噪声
核(代数)
高阶统计量
相似性(几何)
高斯函数
高斯过程
度量(数据仓库)
算法
相似性度量
数学
数据挖掘
雷达
图像(数学)
电信
量子力学
组合数学
物理
作者
Weifeng Liu,P.P. Pokharel,José C. Prı́ncipe
标识
DOI:10.1109/tsp.2007.896065
摘要
The optimality of second-order statistics depends heavily on the assumption of Gaussianity. In this paper, we elucidate further the probabilistic and geometric meaning of the recently defined correntropy function as a localized similarity measure. A close relationship between correntropy and M-estimation is established. Connections and differences between correntropy and kernel methods are presented. As such correntropy has vastly different properties compared with second-order statistics that can be very useful in non-Gaussian signal processing, especially in the impulsive noise environment. Examples are presented to illustrate the technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI