计算机科学
记忆
人工智能
机器学习
班级(哲学)
人工神经网络
机制(生物学)
过程(计算)
深度学习
适应(眼睛)
提前停车
训练集
任务(项目管理)
循环神经网络
作者
Long Lan,Jingyi Wang,Xinghao Wu,Bo Han,Xinwang Liu
标识
DOI:10.1109/tpami.2025.3649111
摘要
Deep neural networks possess remarkable learning capabilities and expressive power, but this makes them vulnerable to overfitting, especially when they encounter mislabeled data. A notable phenomenon called the memorization effect occurs when networks first learn the correctly labeled data and later memorize the mislabeled instances. While early stopping can mitigate overfitting, it doesn't entirely prevent networks from adapting to incorrect labels during the initial training phases, which can result in losing valuable insights from accurate data. Moreover, early stopping cannot rectify the mistakes caused by mislabeled inputs, underscoring the need for improved strategies. In this paper, we introduce an innovative mechanism for continuous review and timely correction of learned knowledge. Our approach allows the network to repeatedly revisit and reinforce correct information while promptly addressing any inaccuracies stemming from mislabeled data. We present a novel method called self-not-true-distillation (SNTD). This technique employs self-distillation, where the network from previous training iterations acts as a teacher, guiding the current network to review and solidify its understanding of accurate labels. Crucially, SNTD masks the true class label in the logits during this process, concentrating on the non-true classes to correct any erroneous knowledge that may have been acquired. We also recognize that different data classes follow distinct learning trajectories. A single teacher network might struggle to effectively guide the learning of all classes at once, which necessitates selecting different teacher networks for each specific class. Additionally, the influence of the teacher network's guidance varies throughout the training process. To address these challenges, we propose SNTD+, which integrates a class-wise distillation strategy along with a dynamic weight adjustment mechanism. Together, these enhancements significantly bolster SNTD's robustness in tackling complex scenarios characterized by label noise.
科研通智能强力驱动
Strongly Powered by AbleSci AI