A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers

超细纤维 材料科学 组织工程 聚电解质 微流控 纳米技术 壳聚糖 粘附 生物医学工程 化学工程 复合材料 聚合物 工程类
作者
Hui Liu,Yaqing Wang,Wenwen Chen,Yue Yu,Lei Jiang,Jianhua Qin
出处
期刊:Materials Science and Engineering: C [Elsevier BV]
卷期号:104: 109705-109705 被引量:24
标识
DOI:10.1016/j.msec.2019.04.084
摘要

Microfluidics-based microfibers have been widely used as bottom-up scaffolds for tissue engineering applications. Different forms of microfibers with certain thickness of shell have been developed during the past decade. Ultra-thin microfiber, as a special and promising carrier of cells, was less explored. In this work, by using the interfacial ionic interaction between sodium alginate (NaA) and chitosan (CS), a novel ultra-thin polyelectrolyte hollow microfiber with the diameter of ~200 μm and the shell thickness of 1.3 ± 0.3 μm was fabricated via a microfluidic device for liver tissue engineering. The fluorescence of FITC labeled CS confirmed the inner CS layer of the fabricated microfiber and the SEM results illustrated its ultra-thin characteristic. Although there are only two layers in the ultra-thin polyelectrolyte hollow microfiber, the following cells encapsulation experiments indicated that it could bear cells loading and the hollow space of the microfibers could encapsulate sufficient number of cells for tissue engineering applications. The presence of inner CS layer in the microfiber promoted cell adhesion and ultra-thin shell characteristic facilitated the exchange of nutrient substance and O2 and thus promoted cell proliferation. HepG2 cells encapsulated in the microfibers maintained favorable viability, proliferation ability and hepatic specific functions during 10 days' culture. These results suggest that the established polyelectrolyte microfibers hold great potential applications in the field of liver tissue engineering. We believe this work will lead to the development of innovative methodologies and materials for both cell culture and biomedical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZjieY发布了新的文献求助10
刚刚
木一完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
星辰大海应助安静的睿渊采纳,获得10
5秒前
斯文败类应助清爽的恋风采纳,获得10
5秒前
青苔完成签到,获得积分10
6秒前
6秒前
6秒前
薛蹇完成签到,获得积分10
6秒前
ooo娜发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助50
8秒前
闪闪鬼神发布了新的文献求助10
9秒前
大雯仔发布了新的文献求助10
9秒前
小天才发布了新的文献求助10
10秒前
施施施发布了新的文献求助10
10秒前
sadasd完成签到,获得积分10
10秒前
10秒前
乌龙茶ICE发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
after_17完成签到,获得积分10
13秒前
33完成签到,获得积分10
13秒前
孙孙完成签到,获得积分10
14秒前
SYSUer发布了新的文献求助10
15秒前
科目三应助木目丶采纳,获得10
15秒前
yidi01完成签到,获得积分10
15秒前
宋晨瑜发布了新的文献求助10
15秒前
janejane完成签到 ,获得积分20
16秒前
万能图书馆应助小天才采纳,获得10
16秒前
黎明卿完成签到,获得积分10
18秒前
专注的从筠完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666196
求助须知:如何正确求助?哪些是违规求助? 4046904
关于积分的说明 12517248
捐赠科研通 3739516
什么是DOI,文献DOI怎么找? 2065235
邀请新用户注册赠送积分活动 1094795
科研通“疑难数据库(出版商)”最低求助积分说明 975124