唾液酸
糖复合物
化学
生物化学
糖蛋白
重组DNA
神经氨酸
中国仓鼠卵巢细胞
细胞培养
糖基化
生物
受体
基因
遗传学
作者
Bojiao Yin,Qiong Wang,Cheng‐Yu Chung,Rahul Bhattacharya,Xiaozhi Ren,Juechun Tang,Kevin J. Yarema,Michael J. Betenbaugh
摘要
A desirable feature of many therapeutic glycoprotein production processes is to maximize the final sialic acid content. In this study, the effect of applying a novel chemical analog of the sialic acid precursor N-acetylmannosamine (ManNAc) on the sialic acid content of cellular proteins and a model recombinant glycoprotein, erythropoietin (EPO), was investigated in CHO-K1 cells. By introducing the 1,3,4-O-Bu3 ManNAc analog at 200-300 µM into cell culture media, the intracellular sialic acid content of EPO-expressing cells increased ∼8-fold over untreated controls while the level of cellular sialylated glycoconjugates increased significantly as well. For example, addition of 200-300 µM 1,3,4-O-Bu3 ManNAc resulted in >40% increase in final sialic acid content of recombinant EPO, while natural ManNAc at ∼100 times higher concentration of 20 mM produced a less profound change in EPO sialylation. Collectively, these results indicate that butyrate-derivatization of ManNAc improves the capacity of cells to incorporate exogenous ManNAc into the sialic acid biosynthetic pathway and thereby increase sialylation of recombinant EPO and other glycoproteins. This study establishes 1,3,4-O-Bu3 ManNAc as a novel chemical supplement to improve glycoprotein quality and sialylation levels at concentrations orders of magnitude lower than alternative approaches. Biotechnol. Bioeng. 2017;114: 1899-1902. © 2017 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI