蛋白质组学
基因组学
生物
太空飞行
计算生物学
功能基因组学
生物信息学
基因
遗传学
基因组
工程类
航空航天工程
作者
Heather Nichols,Ning Zhang,Xuejun Wen
标识
DOI:10.1152/physiolgenomics.00323.2005
摘要
Many serious adverse physiological changes occur during spaceflight. In the search for underlying mechanisms and possible new countermeasures, many experimental tools and methods have been developed to study microgravity caused physiological changes, ranging from in vitro bioreactor studies to spaceflight investigations. Recently, genomic and proteomic approaches have gained a lot of attention; after major scientific breakthroughs in the fields of genomics and proteomics, they are now widely accepted and used to understand biological processes. Understanding gene and/or protein expression is the key to unfolding the mechanisms behind microgravity-induced problems and, ultimately, finding effective countermeasures to spaceflight-induced alterations. Significant progress has been made in identifying the genes/proteins responsible for these changes. Although many of these genes and/or proteins were observed to be either upregulated or downregulated, however, no large-scale genomics and proteomics studies have been published so far. This review aims at summarizing the current status of microgravity-related genomics and proteomics studies and stimulating large-scale proteomics and genomics research activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI