An algorithm for thorough background subtraction from high‐resolution LC/MS data: application for detection of glutathione‐trapped reactive metabolites

分析物 化学 谷胱甘肽 质谱法 算法 加合物 色谱法 减法 基质(化学分析) 背景减法 分析化学(期刊) 生物化学 人工智能 计算机科学 算术 有机化学 数学 像素
作者
Haiying Zhang,Yanou Yang
出处
期刊:Journal of Mass Spectrometry [Wiley]
卷期号:43 (9): 1181-1190 被引量:84
标识
DOI:10.1002/jms.1390
摘要

A control sample background-subtraction algorithm was developed for thorough subtraction of background and matrix-related signals in high-resolution, accurate mass liquid chromatography/mass spectrometry (LC/MS) data to reveal ions of interest in an analyte sample. This algorithm checked all ions in the control scans within a specified time window around the analyte scan for potential subtraction of ions found in that analyte scan. Applying this method, chromatographic fluctuations between runs were dealt with and background and matrix-related signals in the sample could be thoroughly subtracted. The effectiveness of this algorithm was demonstrated using four test compounds, clozapine, diclofenac, imipramine, and tacrine, to reveal glutathione (GSH)-trapped reactive metabolites after incubation with human liver microsomes supplemented with GSH (30 microM compound, 45-min incubation). Using this algorithm with a+/-1.0 min control scan time window, a+/-5 ppm mass error tolerance, and appropriate control samples, the GSH-trapped metabolites were revealed as the major peaks in the processed LC/MS profiles. Such profiles allowed for comprehensive and reliable identification of these metabolites without the need for any presumptions regarding their behavior or properties with respect to mass spectrometric detection. The algorithm was shown to provide superior results when compared to several commercially available background-subtraction algorithms. Many of the metabolites detected were doubly charged species which would be difficult to detect with traditional GSH adduct screening techniques, and thus, some of the adducts have not previously been reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南冥发布了新的文献求助10
1秒前
我是老大应助迷人火龙果采纳,获得10
1秒前
wxj发布了新的文献求助10
5秒前
6秒前
123mutouren完成签到,获得积分10
6秒前
欢呼的鲂完成签到,获得积分10
6秒前
传统的元龙完成签到,获得积分20
6秒前
6秒前
赵晶晶完成签到,获得积分10
6秒前
香蕉觅云应助丛玉林采纳,获得10
7秒前
搞科研的小李同学完成签到 ,获得积分10
8秒前
9秒前
9秒前
彭于彦祖应助传统的元龙采纳,获得20
10秒前
我是老大应助17采纳,获得10
10秒前
科研通AI5应助17采纳,获得10
10秒前
小木发布了新的文献求助10
11秒前
11秒前
曾经的画笔完成签到,获得积分10
12秒前
12秒前
LAST完成签到,获得积分10
14秒前
马前人发布了新的文献求助10
14秒前
阔阔完成签到,获得积分10
15秒前
满意若烟完成签到,获得积分10
15秒前
15秒前
15秒前
wxj完成签到,获得积分10
16秒前
uuh发布了新的文献求助10
16秒前
17秒前
小小的飞机完成签到,获得积分10
18秒前
19秒前
科研通AI5应助ta采纳,获得10
19秒前
满意若烟发布了新的文献求助30
20秒前
独特的思烟完成签到 ,获得积分10
20秒前
20秒前
Qiu发布了新的文献求助10
21秒前
爱吃饼干的土拨鼠完成签到,获得积分10
21秒前
WXWX应助科研宝采纳,获得10
22秒前
打篮球的心大完成签到,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811156
求助须知:如何正确求助?哪些是违规求助? 3355532
关于积分的说明 10376459
捐赠科研通 3072336
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811622
科研通“疑难数据库(出版商)”最低求助积分说明 766715