人工智能
突出
计算机科学
计算机视觉
RGB颜色模型
保险丝(电气)
水准点(测量)
目标检测
融合
对象(语法)
模式识别(心理学)
显著性图
图像融合
可视化
图像(数学)
地理
工程类
哲学
电气工程
语言学
大地测量学
作者
Jingfan Guo,Tongwei Ren,Jia Bei,Yujin Zhu
标识
DOI:10.1145/2808492.2808551
摘要
Automatic detection of salient objects in images attracts much research attention for its usage in numerous multimedia applications. In this paper, we propose a saliency fusion and propagation strategy based salient object detection method for RGB-D images, in which multiple cues are fused to provide high precision detection result and saliency propagation is utilized to improve the completeness of salient objects. To each RGB-D image, we firstly generate the saliency maps based on color cue, location cue and depth cue independently. Then, we fuse the saliency maps and obtain a high precision saliency map. Finally, we propagate saliency to obtain more complete salient objects. We evaluate the proposed method on two public data sets for salient object detection, NJU400 and RGBD Benchmark. The experimental results demonstrate saliency fusion and propagation are effective in salient object detection and our method outperforms the state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI