肌红蛋白
化学
自动氧化
血红素蛋白
血红素
配体(生物化学)
氧气
氧气输送
立体化学
光化学
生物化学
有机化学
酶
受体
作者
Takashi Hayashi,Hirohisa Dejima,Takashi Matsuo,Hideaki Satō,Dai Murata,Yoshio Hisaeda
摘要
Myoglobin will be a good scaffold for engineering a function into proteins. To modulate the physiological function of myoglobin, almost all approaches have been demonstrated by site-directed mutagenesis, however, there are few studies which show a significant improvement in the function. In contrast, we focused on the replacement of heme in the protein with an artificial prosthetic group. Recently, we prepared a novel myoglobin reconstituted with an iron porphycene as a structural isomer of mesoheme. The bluish colored reconstituted myoglobin is relatively stable and the deoxymyoglobin reversibly binds ligands. Interestingly, the O2 affinity of the reconstituted myoglobin, 1.1 x 109 M-1, is a significant 1,400-fold higher than that of the native myoglobin. Furthermore, the unfavorable autoxidation kinetics show 7-fold decrease in rate for the reconstituted myoglobin relative to the native myoglobin, indicating the stable oxy-form against autoxidation. The net results come from the slow dissociation of the O2 ligand in the reconstituted myoglobin, koff = 0.11 s-1, because of the formation of strong hydrogen bond between His64 and negatively charged dioxygen. The present study indicates that the replacement of native heme with an artificially created prosthetic group will give us a unique function into a hemoprotein.
科研通智能强力驱动
Strongly Powered by AbleSci AI