An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

材料科学 纳米片 静电学 纳米技术 聚合物 复合材料 复合数 各向异性 化学物理 化学 物理 光学 物理化学
作者
Mingjie Liu,Yasuhiro Ishida,Yasuo Ebina,Takayoshi Sasaki,Takaaki Hikima,Masaki Takata,Takuzo Aida
出处
期刊:Nature [Nature Portfolio]
卷期号:517 (7532): 68-72 被引量:483
标识
DOI:10.1038/nature14060
摘要

Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miranda完成签到,获得积分10
1秒前
白芷应助科研人采纳,获得10
1秒前
cnmkyt发布了新的文献求助10
3秒前
yar应助嘻嘻哈哈采纳,获得10
3秒前
3秒前
4秒前
5秒前
阿尔治完成签到,获得积分10
6秒前
无辜忆寒完成签到,获得积分10
6秒前
呼呼哈哈完成签到,获得积分10
8秒前
Hoooo...发布了新的文献求助10
8秒前
聂龙誉发布了新的文献求助10
9秒前
9秒前
sjl发布了新的文献求助30
10秒前
一枚青椒发布了新的文献求助10
12秒前
酷波er应助Hoooo...采纳,获得10
12秒前
牛马发布了新的文献求助10
13秒前
13秒前
流飒完成签到,获得积分10
14秒前
青青草发布了新的文献求助30
14秒前
15秒前
16秒前
LeimingDai完成签到,获得积分10
16秒前
欢呼哑铃应助Persevere采纳,获得50
16秒前
今后应助读书的时候采纳,获得10
17秒前
李健的粉丝团团长应助sjl采纳,获得10
18秒前
Calvin发布了新的文献求助10
18秒前
microlite完成签到,获得积分10
19秒前
20秒前
20秒前
朴素八宝粥完成签到,获得积分10
20秒前
yuan应助平淡夏云采纳,获得10
21秒前
21秒前
21秒前
21秒前
天宁完成签到,获得积分20
21秒前
不吃蛋黄发布了新的文献求助10
22秒前
南冥完成签到 ,获得积分10
22秒前
Dddd关注了科研通微信公众号
22秒前
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097916
求助须知:如何正确求助?哪些是违规求助? 3635687
关于积分的说明 11523992
捐赠科研通 3345739
什么是DOI,文献DOI怎么找? 1838931
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823640