A Model Incorporating Axillary Tail Position on Mammography for Preoperative Prediction of Non-sentinel Lymph Node Metastasis in Patients with Initial cN+ Breast Cancer after Neoadjuvant Chemotherapy

医学 乳腺癌 前哨淋巴结 腋窝淋巴结清扫术 置信区间 肿瘤科 内科学 优势比 单变量分析 转移 放射科 淋巴结 癌症 多元分析
作者
Teng Zhu,Xiaocheng Lin,Tingfeng Zhang,Weiping Li,Hongfei Gao,Ciqiu Yang,Fei Ji,Yi Zhang,Junsheng Zhang,Weijun Pan,Xiaosheng Zhuang,Bo Shen,Yuanqi Chen,Kun Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (12): e271-e278 被引量:2
标识
DOI:10.1016/j.acra.2022.03.012
摘要

Rationale and Objectives This study aimed to develop a model incorporating axillary tail position on mammography (AT) for the prediction of non-sentinel Lymph Node (NSLN) metastasis in patients with initial clinical node positivity (cN+). Methods and Materials The study reviewed a total of 257 patients with cN+ breast cancer who underwent both sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND) following neoadjuvant chemotherapy (NAC). A logistic regression model was developed based on these factors and the results of post-NAC AT and axillary ultrasound (AUS). Results Four clinical factors with p<0.1 in the univariate analysis, including ycT0(odds ratio [OR]: 4.84, 95% confidence interval [CI]: 2.13-11.91, p<0.001), clinical stage before NAC (OR: 2.68, 95%CI: 1.15-6.58, p=0.025), estrogen receptor (ER) expression (OR: 3.29, 95%CI: 1.39-8.39, p=0.009), and HER2 status (OR: 0.21, 95%CI: 0.08-0.50, p=0.001), were independent predictors of NSLN metastases. The clinical model based on the above four factors resulted in the area under the curve (AUC) of 0.82(95%CI: 0.76‐0.88) in the training set and 0.83(95% CI: 0.74‐0.92) in the validation set. The results of post-NAC AUS and AT were added to the clinical model to construct a clinical imaging model for the prediction of NSLN metastasis with AUC of 0.87(95%CI: 0.81‐0.93) in the training set and 0.89(95%CI: 0.82‐0.96) in the validation set. Conclusions The study incorporated the results of post-NAC AT and AUS with other clinal factors to develop a model to predict NSLN metastasis in patients with initial cN+ before surgery. This model performed excellently, allowing physicians to select patients for whom unnecessary ALND could be avoided after NAC. This study aimed to develop a model incorporating axillary tail position on mammography (AT) for the prediction of non-sentinel Lymph Node (NSLN) metastasis in patients with initial clinical node positivity (cN+). The study reviewed a total of 257 patients with cN+ breast cancer who underwent both sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND) following neoadjuvant chemotherapy (NAC). A logistic regression model was developed based on these factors and the results of post-NAC AT and axillary ultrasound (AUS). Four clinical factors with p<0.1 in the univariate analysis, including ycT0(odds ratio [OR]: 4.84, 95% confidence interval [CI]: 2.13-11.91, p<0.001), clinical stage before NAC (OR: 2.68, 95%CI: 1.15-6.58, p=0.025), estrogen receptor (ER) expression (OR: 3.29, 95%CI: 1.39-8.39, p=0.009), and HER2 status (OR: 0.21, 95%CI: 0.08-0.50, p=0.001), were independent predictors of NSLN metastases. The clinical model based on the above four factors resulted in the area under the curve (AUC) of 0.82(95%CI: 0.76‐0.88) in the training set and 0.83(95% CI: 0.74‐0.92) in the validation set. The results of post-NAC AUS and AT were added to the clinical model to construct a clinical imaging model for the prediction of NSLN metastasis with AUC of 0.87(95%CI: 0.81‐0.93) in the training set and 0.89(95%CI: 0.82‐0.96) in the validation set. The study incorporated the results of post-NAC AT and AUS with other clinal factors to develop a model to predict NSLN metastasis in patients with initial cN+ before surgery. This model performed excellently, allowing physicians to select patients for whom unnecessary ALND could be avoided after NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待黎明发布了新的文献求助10
刚刚
吕小软发布了新的文献求助10
刚刚
科研通AI6应助皮皮采纳,获得10
1秒前
大个应助自觉的绿蝶采纳,获得10
1秒前
wanci应助Sugar采纳,获得10
2秒前
科研顺利完成签到,获得积分10
3秒前
wuhaixia完成签到,获得积分10
3秒前
上官若男应助司马懿采纳,获得10
3秒前
4秒前
5秒前
adverse完成签到,获得积分20
5秒前
精明的火车完成签到,获得积分20
5秒前
5秒前
斯文败类应助changyongcheng采纳,获得10
6秒前
7秒前
zhouzhou发布了新的文献求助10
9秒前
嘿哈完成签到,获得积分10
9秒前
9秒前
yang发布了新的社区帖子
10秒前
11秒前
12秒前
12秒前
13秒前
雪落发布了新的文献求助10
14秒前
刘世玲发布了新的文献求助10
15秒前
ff发布了新的文献求助10
16秒前
16秒前
maguodrgon发布了新的文献求助10
18秒前
19秒前
ding应助LLL采纳,获得10
19秒前
英俊的铭应助LLL采纳,获得10
19秒前
shice951229发布了新的文献求助10
19秒前
Smile完成签到,获得积分20
19秒前
火龙果完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
tjunqi完成签到,获得积分10
23秒前
浮游应助震动的听安采纳,获得10
25秒前
Alico完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113