Sensory representation and detection mechanisms of gut osmolality change

口渴 感觉系统 神经科学 人口 血浆渗透压 血管活性肠肽 高渗盐水 光遗传学 生物 神经肽 内科学 内分泌学 加压素 医学 受体 环境卫生
作者
Takako Ichiki,Tongtong Wang,Ann Kennedy,Allan-Hermann Pool,Haruka Ebisu,David J. Anderson,Yuki Oka
出处
期刊:Nature [Springer Nature]
卷期号:602 (7897): 468-474 被引量:28
标识
DOI:10.1038/s41586-021-04359-5
摘要

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3,4,5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lanhu完成签到 ,获得积分10
2秒前
2秒前
3秒前
彭于晏应助marcie采纳,获得10
3秒前
zzz完成签到,获得积分20
3秒前
bobo完成签到,获得积分10
4秒前
子车半雪完成签到,获得积分10
4秒前
思源应助倦鸟有言采纳,获得10
4秒前
4秒前
生动的冷玉完成签到 ,获得积分10
4秒前
5秒前
sars518发布了新的文献求助10
5秒前
6秒前
one完成签到,获得积分10
6秒前
简一完成签到 ,获得积分10
6秒前
hanluyt完成签到,获得积分10
6秒前
6秒前
领导范儿应助ywq采纳,获得10
6秒前
枍枫完成签到 ,获得积分10
7秒前
XD824完成签到,获得积分10
7秒前
微笑高山完成签到 ,获得积分10
7秒前
Admin完成签到,获得积分10
7秒前
7秒前
8秒前
超级的妙晴完成签到 ,获得积分10
8秒前
8秒前
XD824发布了新的文献求助10
10秒前
JamesTYD发布了新的文献求助10
10秒前
独特天寿发布了新的文献求助10
11秒前
12秒前
阳阳发布了新的文献求助10
12秒前
13秒前
13秒前
糊了你的粥完成签到,获得积分20
13秒前
14秒前
14秒前
旧巷望雨完成签到 ,获得积分20
15秒前
luffy完成签到,获得积分20
16秒前
16秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2385192
求助须知:如何正确求助?哪些是违规求助? 2091868
关于积分的说明 5261446
捐赠科研通 1818918
什么是DOI,文献DOI怎么找? 907165
版权声明 559114
科研通“疑难数据库(出版商)”最低求助积分说明 484574