A Layer-Wise Theoretical Framework for Deep Learning of Convolutional Neural Networks

深度学习 计算机科学 人工智能 卷积神经网络 机器学习 标杆管理 人工神经网络 黑匣子 图层(电子) 业务 营销 有机化学 化学
作者
Huu-Thiet Nguyen,Sitan Li,Chien Chern Cheah
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 14270-14287 被引量:14
标识
DOI:10.1109/access.2022.3147869
摘要

As research attention in deep learning has been focusing on pushing empirical results to a higher peak, remarkable progress has been made in the performance race of machine learning applications in the past years.Yet deep learning based on artificial neural networks still remains difficult to understand as it is considered as a black-box approach.A lack of understanding of deep learning networks from the theoretical perspective would not only hinder the employment of them in applications where high-stakes decisions need to be made, but also limit their future development where artificial intelligence is expected to be robust, predictable and trustable.This paper aims to provide a theoretical methodology to investigate and train deep convolutional neural networks so as to ensure convergence.A mathematical model based on matrix representations for convolutional neural networks is first formulated and an analytic layer-wise learning framework for convolutional neural networks is then proposed and tested on several common benchmarking image datasets.The case studies show a reasonable trade-off between accuracy and analytic learning, and also highlight the potential of employing the proposed layer-wise learning method in finding the appropriate number of layers in actual implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyb发布了新的文献求助10
2秒前
2秒前
3秒前
6秒前
7秒前
7秒前
Lucas应助现代的岩采纳,获得10
7秒前
homer完成签到,获得积分10
7秒前
finejade完成签到 ,获得积分10
9秒前
Jianismye发布了新的文献求助10
9秒前
10秒前
曾经的真发布了新的文献求助10
10秒前
动听如天发布了新的文献求助10
11秒前
13秒前
cdhuang完成签到,获得积分10
13秒前
Eve完成签到,获得积分20
13秒前
看起来不太强完成签到,获得积分10
14秒前
所所应助目土土采纳,获得10
14秒前
14秒前
15秒前
15秒前
16秒前
思源应助笙笙采纳,获得10
16秒前
快乐难敌发布了新的文献求助10
17秒前
小蘑菇应助曾经的真采纳,获得10
18秒前
19秒前
29发布了新的文献求助10
19秒前
20秒前
angel发布了新的文献求助10
20秒前
Jasper应助楚文强采纳,获得10
22秒前
22秒前
小二郎应助haiwei采纳,获得10
23秒前
yuuuu完成签到,获得积分20
25秒前
27秒前
wyb完成签到,获得积分10
27秒前
莉莉发布了新的文献求助10
27秒前
29秒前
上官若男应助才下眉头采纳,获得10
29秒前
29秒前
爆米花应助LC采纳,获得10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814371
求助须知:如何正确求助?哪些是违规求助? 3358476
关于积分的说明 10395223
捐赠科研通 3075736
什么是DOI,文献DOI怎么找? 1689502
邀请新用户注册赠送积分活动 812992
科研通“疑难数据库(出版商)”最低求助积分说明 767428