Real-time forecasting of exercise-induced fatigue from wearable sensors

计算机科学 可穿戴计算机 人工智能 机器学习 蹲下 变压器 分类器(UML) 可穿戴技术 工程类 物理医学与康复 电压 医学 电气工程 嵌入式系统
作者
Yanran Jiang,Peter Malliaras,Bernard Chen,Dana Kulić
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105905-105905 被引量:16
标识
DOI:10.1016/j.compbiomed.2022.105905
摘要

Although a number of studies attempt to classify human fatigue, most models can only identify fatigue after fatigue has already occurred. In this paper, we propose a novel time series approach to forecasting wearable sensor data and associated fatigue progression during exercise. The proposed framework consists of spatio-temporal attention-based Transformer with an auxiliary critic and a fatigue classifier. The Transformer network is used to analyze the person-independent pattern underlying the past kinematic sequence obtained from wearable sensors and generate short term predictions of the human motion. Adversarial training is employed to regularize the Transformer and improve the time series forecasting performance. A fatigue classifier is used to estimate person-independent fatigue levels based on the forecasted wearable sensor data from the Transformer model. The proposed approach is validated with simulated and real squat datasets which were collected from young healthy participants. The proposed network can accurately forecast a time horizon of up to 80 timesteps for motion signal forecasting and fatigue classification. In terms of fatigue prediction, an accuracy of 83% and a Pearson correlation coefficient of 0.92 were achieved on forecasted motion data with unseen participant data. The experimental results show that our model can predict fatigue progression and outperforms other state-of-the-art techniques, achieving 95% correlation compared to 83% for the best performing baseline method. Successfully predicting fatigue progression can help a patient or athlete monitor and adjust their exercise session to prevent overexertion and fatigue-induced injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Owen应助南非的猫采纳,获得10
3秒前
3秒前
哈哈哈发布了新的文献求助10
3秒前
陈功城完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
今朝完成签到 ,获得积分10
4秒前
5秒前
5秒前
李健的小迷弟应助12458采纳,获得10
5秒前
江璃发布了新的文献求助10
5秒前
顾矜应助企鹅乌云采纳,获得10
7秒前
7秒前
8秒前
可爱败发布了新的文献求助10
9秒前
younghippo发布了新的文献求助10
9秒前
由由发布了新的文献求助10
10秒前
苯环超人发布了新的文献求助10
10秒前
温柔的惜儿应助Cher1she采纳,获得10
11秒前
heli发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
15秒前
慕青应助LQj采纳,获得10
16秒前
17秒前
欧阳发布了新的文献求助10
18秒前
12458发布了新的文献求助10
18秒前
18秒前
IRONY发布了新的文献求助30
18秒前
Jasper应助冷静帅哥采纳,获得30
18秒前
19秒前
19秒前
听月眠完成签到,获得积分10
20秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839747
求助须知:如何正确求助?哪些是违规求助? 3382082
关于积分的说明 10521084
捐赠科研通 3101451
什么是DOI,文献DOI怎么找? 1708109
邀请新用户注册赠送积分活动 822159
科研通“疑难数据库(出版商)”最低求助积分说明 773208