生物
间充质干细胞
细胞毒性T细胞
细胞生物学
分子生物学
体外
生物化学
作者
Hana M Zegallai,Ejlal Abu-El-Rub,Folayemi Olayinka-Adefemi,Laura K. Cole,Genevieve C. Sparagna,Aaron J. Marshall,Grant M. Hatch
标识
DOI:10.1096/fj.202200145r
摘要
Barth Syndrome (BTHS) is a rare X-linked genetic disorder caused by mutation in the TAFAZZIN gene. Tafazzin (Taz) deficiency in BTHS patients results in an increased risk of infections. Mesenchymal stem cells (MSCs) are well known for their immune-inhibitory function. We examined how Taz-deficiency in murine MSCs impact their ability to modulate the function of lipopolysaccharide (LPS)-activated wild type (WT) B lymphocytes. MSCs from tafazzin knockdown (TazKD) mice exhibited a reduction in mitochondrial cardiolipin compared to wild type (WT) MSCs. However, mitochondrial bioenergetics and membrane potential were unaltered. In contrast, TazKD MSCs exhibited increased reactive oxygen species generation and increased glycolysis. The increased glycolysis was associated with an elevated proliferation, phosphatidylinositol-3-kinase expression and expression of the immunosuppressive markers indoleamine-2,3-dioxygenase, cytotoxic T-lymphocyte-associated protein 4, interleukin-10, and cluster of differentiation 59 compared to controls. Inhibition of glycolysis with 2-deoxyglucose attenuated the TazKD-mediated increased expression of cytotoxic T-lymphocyte-associated protein 4 and interleukin-10. When co-cultured with LPS-activated WT B cells, TazKD MSCs inhibited B cell proliferation and growth rate and reduced B cell secretion of immunoglobulin M compared to controls. In addition, co-culture of LPS-activated WT B cells with TazKD MSCs promoted B cell differentiation toward interleukin-10 secreting plasma cells and B regulatory cells compared to controls. The results indicate that Taz deficiency in MSCs promote reprogramming of activated B lymphocytes toward immunosuppressive phenotypes.
科研通智能强力驱动
Strongly Powered by AbleSci AI